Кислотно-щелочной баланс. Дисбиоз кишечника как замкнутый круг… В тонком кишечнике какая среда

21.08.2020 Лечение

14.11.2013

580 Просмотры

В тонкой кишке происходит практически полное расщепление и всасывание в кровоток и лимфоток пищевых белков, жиров, углеводов.

Из желудка в 12 п.к. может поступить только химус – пища, обработанная до состояния жидкой или полужидкой консистенции.

Пищеварение в 12 п.к. осуществляется в нейтральной или щёлочной среде (натощак рН 12 п.к. составляет 7,2-8,0). осуществлялось в кислой среде. Поэтому содержимое желудка имеет кислую реакцию. Нейтрализация кислой среды желудочного содержимого и установление щёлочной среды осуществляется в 12 п.к. за счет поступающих в кишку секретов (соков) поджелудочной железы, тонкой кишки и желчи, которые имеют щёлочную реакцию за счёт присутствующих в них гидрокарбонатов.

Химус из желудка в 12 п.к. поступает небольшими порциями. Раздражение соляной кислотой рецепторов пилорического сфинктера со стороны желудка приводит к его раскрытию. Раздражение соляной кислотой рецепторов пилорического сфинктера со стороны 12 п.к. приводит к его закрытию. Как только рН в пилорической части 12 п.к. изменяется в кислую сторону, пилорический сфинктер сокращается и поступление химуса из желудка в 12 п.к. прекращается. После восстановления щёлочной рН (в среднем за 16 сек), пилорический сфинктер пропускает очередную порцию химуса из желудка и так далее. В 12 п.к. рН колеблется от 4 до 8.

В 12 п.к. после нейтрализации кислой среды желудочного химуса прекращается действие пепсина – фермента желудочного сока. в тонком кишечнике продолжается уже в щёлочной среде под действием ферментов, которые поступают в просвет кишки в составе секрета (сока) поджелудочной железы, а также в составе кишечного секрета (сока) от энтероцитов – клеток тонкой кишки. Под действием ферментов поджелудочной железы осуществляется полостное пищеварение – расщепление в полости кишки пищевых белков, жиров и углеводов (полимеров) до промежуточных веществ (олигомеров). Под действием ферментов энтероцитов осуществляется пристеночное (около внутренней стенки кишки) олигомеров до мономеров, то есть окончательное расщепление пищевых белков, жиров и углеводов на составляющие компоненты, которые поступают (всасываются) в кровеносную и лимфатическую систему (в кровоток и лимфоток).

Для пищеварения в тонкой кишке также необходима , которая производится клетками печени (гепатоцитами) и поступает в тонкую кишку по желчным (жёлчным) путям (жёлчевыводящим путям). Основной компонент желчи – жёлчные кислоты и их соли необходимы для эмульгирования жиров, без которого нарушается, замедляется процесс расщепления жиров. Жёлчные пути подразделяются на внутри- и внепечёночные. Внутрипечёночные жёлчные пути (протоки) представляют собой древовидную систему трубочек (протоков), по которым оттекает от гепатоцитов желчь. Мелкие жёлчные протоки соединены с более крупным протоком, совокупность более крупных протоков образует ещё более крупный проток. Завершают это объединение в правой доле печени – жёлчный проток правой доли печени, в левой – жёлчный проток левой доли печени. Жёлчный проток правой доли печени называют правым жёлчным протоком. Жёлчный проток левой доли печени называют левым жёлчным протоком. Эти два протока образуют общий печёночный проток. У ворот печени общий печёночный проток соединятся с пузырным жёлчным протоком, образуя общий жёлчный проток, который направляется к 12 п.к. По пузырному жёлчному протоку жёлчь оттекает от жёлчного пузыря. Жёлчный пузырь представляет собой резервуар для хранения желчи, образуемой клетками печени. Жёлчный пузырь расположен на нижней поверхности печени, в правой продольной борозде.

Секрет (сок) образуется (синтезируется) ацинозными панкреоцитами (клетками поджелудочной железы), которые структурно объединены в ацинусы. Клетки ацинуса образуют (синтезируют) сок поджелудочной железы, который поступает в выводной проток ацинуса. Соседние ацинусы разделены тонкими прослойками соединительной ткани, в которой расположены кровеносные капилляры и нервные волокна вегетативной нервной системы. Протоки соседних ацинусов сливаются в межацинозные протоки, которые, в свою очередь, впадают в более крупные внутридольковые и междольковые протоки, лежащие в соединительнотканных перегородках. Последние, сливаясь, образуют общий выводной проток, который проходит от хвоста железы к головке (структурно в поджелудочной железе выделяют головку, тело и хвост). Выводной проток (Вирсунгиев проток) поджелудочной железы вместе с общим жёлчным протоком косо пронизывает стенку нисходящей части 12 п.к. и открывается внутри 12 п.к. на слизистой оболочке. Это место называется большим (фатеровым) сосочком. В этом месте находится гладкомышечный сфинктер Одди, который также функционирует по принципу ниппеля – пропускает из протока желчь и сок поджелудочной железы в 12 п.к. и перекрывает поступление содержимого 12 п.к. в проток. Сфинктер Одди сложный сфинктер. Он состоит из сфинктера общего жёлчного протока, сфинктера панкреатического протока (протока поджелудочной железы) и сфинктера Вестфаля (сфинктера большого дуоденального сосочка), обеспечивающего разобщение обоих протоков с 12 п.к.. Иногда на 2 см выше от большого сосочка расположен малый сосочек – образованный добавочным, непостоянным малым (Санториниевым) протоком поджелудочной железы. В этом месте находится сфинктер Хелли.

Сок поджелудочной железы представляет собой бесцветную прозрачную жидкость, которая имеет щёлочную реакцию (рН 7,5-8,8) за счёт содержания в нём гидрокарбонатов. Сок поджелудочной железы содержит ферменты (амилаза, липаза, нуклеаза и другие) и проферменты (трипсиноген, химотрипсиноген, прокарбоксипептидазы А и В, проэластазы и профосфолипаза и другие). Проферменты представляют собой неактивную форму фермента. Активация проферментов поджелудочной железы (превращение их в активную форму – фермент) происходит в 12 п.к.

Эпителиальные клетки 12 п.к. – энтероциты синтезируют и выделяют в просвет кишки фермент киназоген (профермент). Под действием жёлчных кислот киназоген превращается в энтеропептидазу (фермент). Энтерокиназа отщепляет у трипсиногена гекосопептид, в результате чего образуется фермент трипсин. Для реализации этого процесса (для превращения неактивной формы фермента (трипсиногена) в активную (трипсин)) необходима щёлочная среда (рН 6,8-8,0) и присутствие ионов кальция (Са2+). Последующее превращение трипсиногена в трипсин осуществляется в 12 п.к. под действием образовавшегося трипсина. Кроме того, трипсин активизирует другие проферменты поджелудочной железы. Взаимодействие трипсина с проферментами приводит к образованию ферментов (химотрипсина, карбоксипептидаз А и В, эластаз и фосфолипаз и других). Трипсин проявляет своё оптимальное действие в слабощёлочной среде (при pH 7,8-8).

Ферменты трипсин и химотрипсин осуществляют расщепление пищевых белков до олигопептидов. Олигопептиды – промежуточный продукт расщепления белков. Трипсин, химотрипсин, эластаза разрушают внутрипептидные связи белков (пептидов), в результате чего высокомолекулярные (содержащие много аминокислот) белки распадаются на низкомолекулярные (олигопептиды).

Нуклеазы (ДНК-азы, РНК-азы) расщепляют нуклеиновые кислоты (ДНК, РНК) до нуклеотидов. Нуклеотиды под действием щёлочных фосфатаз и нуклеотидаз превращаются в нуклеозиды, которые всасываются из пищеварительной системы в кровь и лимфу.

Панкреатическая липаза расщепляет жиры, в основном триглицериды, до моноглицеридов и жирных кислот. На липиды действуют также фосфолипаза А2 и эстераза.

Поскольку пищевые жиры нерастворимы в воде, липаза действует только на поверхности жира. Чем больше поверхность контакта жира и липазы, тем активнее происходит расщепление жира липазами. Увеличивает поверхность контакта жира и липазы процесс эмульгирования жира. В результате эмульгирования жир разбивается на множество мелких капель размером от 0,2 до 5 мкм. Эмульгирование жиров начинается в ротовой полости в результате измельчения (пережёвывания) пищи и смачивания её слюной, затем продолжается в желудке под влиянием перистальтики желудка (перемешивание пищи в желудке) и окончательное (основное) эмульгирование жиров происходит в тонкой кишке под влиянием жёлч¬ных кислот и их солей. Кроме того, образованные в результате расщепления триглицеридов жирные кислоты взаимодействуют со щёлочами тонкой кишки, что приводит к образованию мыла, которое дополнительно эмульгирует жиры. При недостатке жёлчных кислот и их солей происходит недостаточное эмульгирование жиров, а соответственно и их расщепление и усвоение. Жиры удаляются с калом. При этом кал становится жирным, кашицеобразным белого или серого цвета. Это состояние называется стеатореей. Желчь подавляет рост гнилостной микрофлоры. Поэтому при недостаточном образовании и поступлении в кишечник желчи развивается гнилостная диспепсия. При гнилостной диспепсии возникает диарея=понос (кал темно-коричневого цвета, жидкий или кашицеобразный с резким гнилостным запахом, пенистый (с пузырьками газа). Продукты гниения (диметилмеркаптан, сероводород, индол, скатол и другие) ухудшают общее самочувствие (слабость, потеря аппетита, недомогание, познабливание, головная боль).

На активность липазы прямо пропорционально влияет присутствие ионов кальция (Са2+), жёлчных солей, фермента колипазы. Под действием липаз осуществляется обычно неполный гидролиз триглицеридов; при этом образуется смесь из моноглицеридов (около 50 %), жирных кислот и глицерина (40 %), ди- и триглицеридов (3-10%).

Глицерин и короткие жирные кислоты (содержащие до 10 атомов углерода) самостоятельно всасываются из кишечника в кровь. Жирные кислоты, содержащие более 10 атомов углерода, свободный холестерол, моноацилглицеролы водонерастворимы (гидрофобны) и не могут самостоятельно попасть из кишечника в кровь. Это становится возможным после их соединения с жёлчными кислотами с образованием комплексных соединений, которые называются мицеллы. Размер мицеллы очень мал – в диаметре около 100 нм. Сердцевина мицелл гидрофобна (отталкивает воду), а оболочка гидрофильна. Жёлчные кислоты служат проводником для жирных кислот из полости тонкой кишки в энтероциты (клетки тонкого кишечника). У поверхности энтероцитов мицеллы распадаются. Жирные кислоты, свободный холестерол, моноацилглицеролы поступают внутрь энтероцита. Всасывание жирорастворимых витаминов взаимосвязано с этим процессом. Парасимпатическая вегетативная нервная система, гормоны корко¬вого вещества надпочечников, щитовидной железы, гипофиза, гормоны 12 п.к. секретин и холецистокинин (ХЦК) увеличивают всасывание, симпатическая вегетативная нервная система уменьшает всасывание. Освободившиеся жёлчные кислоты, достигая толстого кишечника, всасываются в кровь, в основном, в подвздошной кишке, и далее поглощаются (изымаются) из крови клетками печени (гепатоцитами). В энтероцитах при участии внутриклеточных ферментов из жирных кислот образуются фосфолипиды, триацилглицеролы (ТАГ, триглицериды (жиры) – соединение глицерола (глицерина) с тремя жирными кислотами), эфиры холестерола (соединение свободного холестерола с жирной кислотой). Далее из этих веществ в энтероцитах образуются комплексные соединения с белком – липопротеиды, в основном, хиломикроны (ХМ) и в меньшем количестве – липопротеиды высокой плотности (ЛПВП). ЛПВП из энтероцитов поступают в кровоток. ХМ имеют большой размер и поэтому не могут попасть непосредственно из энтероцита в кровеносную систему. Из энтероцитов ХМ поступают в лимфу, в лимфатическую систему. Из грудного лимфатического протока ХМ попадают в кровеносную систему.

Панкреатическая амилаза (α-Амилаза), расщепляет полисахариды (углеводы) до олигосахаридов. Олигосахариды – промежуточный продукт расщепления полисахаридов состоящий из нескольких моносахаридов, соединённых между собой межмолекулярными связями. Среди олигосахаридов образованных из пищевых полисахаридов под действием панкреатической амилазы преобладают дисахариды, состоящие из двух моносахаридов и трисахариды, состоящие из трёх моносахаридов. α-Амилаза проявляет своё оптимальное действие в нейтральной среде (при рН 6,7-7,0).

В зависимости от употребляемой еды, поджелудочная железа вырабатывает разное количество ферментов. Например, если есть только жирную пищу, то поджелудочная железа будет вырабатывать преимущественно фермент для переваривания жиров – липазу. В этом случае выработка других ферментов значительно сократится. Если же есть один только хлеб, то вырабатывать поджелудочная железа будет ферменты, расщепляющие углеводы. Злоупотреблять однообразным рационом не следует, так как постоянный дисбаланс в выработке ферментов может привести к заболеваниям.

Эпителиальные клетки тонкой кишки (энтероциты) выделяют в просвет кишки секрет, который называют кишечным соком. Кишечный сок имеет щёлочную реакцию за счёт содержания в нём гидрокарбонатов. рН кишечного сока колеблется от 7,2 до 8,6, содержит ферменты, слизь, другие вещества, а также состарившиеся отторгшиеся энтероциты. В слизистой оболочке тонкой кишки происходит непрерывная смена слоя клеток поверхностного эпителия. Полное обновление этих клеток у человека совершается за 1-6 сут. Такая интенсивность образования и отторжения кле¬ток становится причиной большое их количества в кишечном соке (у человека за сутки отторгается около 250 г энтероцитов).

Слизь синтезированная энтероцитами образует защитный слой, предотвращающий чрезмерное механическое и химическое воздействие химуса на слизистую оболочку кишки.

В кишечном соке более 20 раз¬личных ферментов, принимающих участие в пищеварении. Основная часть этих ферментов принимает участие в при¬стеночном пищеварении, то есть непосредственно у поверхности ворсинок, микроворсинок тонкой кишки – в гликокаликсе. Гликокаликс представляет собой молекулярное сито, которое пропускает к клеткам кишечного эпителия молекулы, в зависимости от их величины, заряда и других параметров. Гликокаликс содержит ферменты из полости кишечника и синтезированные самими энтероцитами. В гликаликсе происходит окончательное расщепление промежуточных продуктов расщепления белков, жиров и углеводов на составляющие компоненты (олигомеров до мономеров). Гликокаликс, микроворсинки и апикальная мембрана в совокупности называются исчерченной каёмкой.

Карбогидразы кишечного сока состоят в основном из дисахаридаз, которые расщепляют дисахариды (углеводы, состоящие из двух молекул моносахаридов) на две молекулы моносахаридов. Сахараза расщепляет молекулу сахарозы на молекулу глюкозы и фруктозы. Мальтаза расщепляет молекулу мальтозы, а трегалаза – трегалозу на две молекулы глюкозы. Лактаза (α-галактазидаза) расщепляет молекулу лактозы на молекулу глюкозы и галактозы. Дефицит синтеза той или иной дисахаридазы клетками слизистой оболочки тонкой кишки становится причиной непереносимости соответствующего дисахарида. Известны генетически закрепленные и приобретенные лактазная, трегалазная, сахаразная и комбинированные дисахаридазные недоста¬точности.

Пептидазы кишечного сока расщепляют пептидную связь между двумя конкретными аминокислотами. Пепти¬дазы кишечного сока завершают гидролиз олигопептидов, в результате чего образуются аминокислоты – конечные продукты расщепления (гидролиза) белков, которые поступают (всасываются) из тонкой кишки в кровь и лимфу.

Нуклеазы (ДНК-азы, РНК-азы) кишечного сока расщепляют ДНК и РНК до нуклеотидов. Нуклеотиды под действием щёлочных фосфатаз и нуклеотидаз кишечного сока превращаются в нуклеозиды, которые всасываются из тонкой кишки в кровь и лимфу.

Основная липаза кишечного сока – кишечная моноглицеридлипаза. Она гидролизует моноглицериды с любой длиной углеводородной цепи, а также короткоцепочечные ди- и триглицериды, в меньшей мере - триглицериды со средней длиной цепи и эфиры холестерина.

Управление секрецией сока поджелудочной железы, кишечного сока, желчи, двигательной активности (перистальтики) тонкой кишки осуществляется нервно-гуморальными (гормональными) механизмами. Управление осуществляется вегетативной нервной системой (ВНС) и гормонами, которые синтезируются клетками гастроэнтеропанкреатической эндокринной системы – части диффузной эндокринной системы.

В соответствии с функциональными особенностями в ВНС выделяют парасимпатическую ВНС и симпатическую ВНС. Оба эти отдела ВНС осуществляют управление.

Которые осуществляют управление, приходят в состояние возбуждения под влиянием импульсов, которые поступают к ним от рецепторов полости рта, носа, желудка, тонкой кишки, а также из коры головного мозга (мысли, разговоры о еде, вид пищи и тому подобное). В ответ на поступающие к ним импульсы, возбуждённые нейроны посылают по эфферентным нервным волокнам импульсы к управляемым клеткам. Около клеток аксоны эфферентных нейронов образуют многочисленные разветвления, заканчивающиеся тканевыми синапсами. При возбуждении нейрона из тканевого синапса выделяется медиатор – вещество, с помощью которого возбуждённый нейрон влияет на функцию управляемых им клеток. Медиатор парасимптаческой вегетативной нервной системы ацетилхолин. Медиатор симпатической вегетативной нервной системы норадреналин.

Под действием ацетилхолина (парасимпатической ВНС), происходит увеличение секреции кишечного сока, сока поджелудочной железы, желчи, усиление перистальтики (моторной, двигательной функции) тонкой кишки, жёлчного пузыря. Эфферентные парасимпатические нервные волокна подходят к тонкой кишке, к поджелудочной железе, к клеткам печени, к жёлчевыводящим путям в составе блуждающего нерва. Ацетилхолин оказывает своё действие на клетки через М-холинорецепторы, расположенные на поверхности (мембранах, оболочках) этих клеток.

Под действием норадреналина (симпатической ВНС) уменьшается перистальтика тонкой кишки, уменьшается образования кишечного сока, сока поджелудочной железы, желчи. Норадреналин оказывает своё действие на клетки через β-адренорецепторы, расположенные на поверхности (мембранах, оболочках) этих клеток.

В управлении моторной функции тонкой кишки принимает участие ауэрбахово сплетение – внутриорганный отдел вегетативной нервной системы (интрамуральная нервная система). В основе управления – местные периферические рефлексы. Ауэрбахово сплетение представляет собой густую непрерывную сеть нервных узлов, соединённых между собой нервными тяжами. Нервные узлы представляют собой совокупность нейронов (нервных клеток), а нервные тяжи – отростки этих нейронов. В соответствии с функциональными особенностями Ауэрбахово сплетение состоит из нейронов парасимпатической ВНС и симпатической ВНС. Нервные узлы и нервные тяжи Ауэрбахова сплетение располагаются между продольным и циркулярным слоями гладкомышечных пучков стенки кишки, идут в продольном и циркулярном направлении и образуют вокруг кишки непрерывную нервную сеть. Нервные клетки Ауэрбахова сплетения иннервируют продольные и циркулярные пучки гладкомышечных клеток кишки, регулируя их сокращения.

В управлении секреторной функцией тонкой кишки также принимают участие два нервных сплетения интрамуральной нервной системы (внутриорганной вегетативной нервной системы): субсерозное нервное сплетение (воробьёво сплетение) и подслизистое нервное сплетение (мейснерово сплетение). Управление осуществляется на основе местных периферических рефлексов. Эти оба сплетения, как и ауэрбахово сплетение представляет собой густую непрерывную сеть нервных узлов, соединённых между собой нервными тяжами, состоит из нейронов парасимпатической ВНС и симпатической ВНС.

Нейроны всех трёх сплетений имеют между собой синаптические связи.

Двигательная активность тонкой кишки управляется двумя автономными источниками ритма. Первый расположен у места впадения общего жёлчного протока в двенадцатиперстную кишку, а другой – в подвздошной кишке.

Двигательная активность тонкой кишки управляется рефлексами, которые возбуждают и тормозят моторику кишки. К рефлексам, которые возбуждают моторику тонкой кишки, относятся: пищеводно-кишечный, желудочно-кишечный и кишечно-кишечный рефлексы. К рефлексам, которые тормозят моторику тонкой кишки, относятся: кишечно-кишечный, ректоэнтеральный, рефлекс рецепторной релаксация (торможения) тонкой кишки во время еды.

Двигательная активность тонкой кишки зависит от физических и химических свойств химуса. Большое содержание клетчатки, солей, промежуточных продуктов гидролиза (особенно жиров) в химусе усиливают перистальтику тонкой кишки.

S-клетки слизистой оболочки 12 п.к. синтезируют и выделяют в просвет кишки просекретин (прогормон). Просекретин в основном под действием соляной кислоты желудочного химуса превращается в секретин (гормон). Наиболее интенсивно превращение просекретина в секретин происходит при рН=4 и меньше. При увеличении рН скорость превращения уменьшается прямо пропорционально. Секретин всасывается в кровь и с током крови достигает клеток поджелудочной железы. Под действием секретина клетки поджелудочной железы увеличивают секрецию воды и гидрокарбонатов. Секретин не увеличивает секрецию поджелудочной железой ферментов и проферментов. Под действием секретина увеличивается секреция щёлочного компонента сока поджелудочной железы, который поступает в 12 п.к. Чем больше кислотность желудочного сока (чем меньше рН желудочного сока), тем больше образуется секретина, тем больше выделяется в 12 п.к. сока поджелудочной железы с большим количеством воды и гидрокарбонатов. Гидрокарбонаты нейтрализуют соляную кислоту, рН увеличивается, образование секретина уменьшается, секреция сока поджелудочной железы с высоким содержанием гидрокарбонатов уменьшается. Кроме того, под действием секретина увеличивается жёлчеобразование, секреции желез тонкой кишки.

Превращение просекретина в секретин происходит также под действием этилового спирта, жирных, жёлчных кислот, компонентов специй.

Наибольшее количество S-клеток расположено в 12 п.к. и в верхней (проксимальной) части тощей кишки. Наименьшее количество S-клеток расположено в наиболее удалённой (нижней, дистальной) части тощей кишки.

Секретин представляет собой пептид, состоящий из 27 аминокислотных остатков. Сходную к секретину химическую структуру, а соответственно, возможно похожее действие, имеют вазоактивный интестинальный пептид (ВИП), глюкагоноподобный пептид-1, глюкагон, глюкозозависимый инсулинотропный полипептид (ГИП), кальцитонин, кальцитонин ген связанный пептид, парат-гормон, рилизинг фактор гормона роста, кортикотропин рилизинг фактор и другие.

При поступлении химуса из желудка в тонкую кишку I-клетки расположенные в слизистой оболочке 12 п.к. и верхней (проксимальной) части тощей кишки начинают синтезировать и выделять в кровь гормон холецистокинин (ХЦК, ССК, панкреозимин). Под действием ХЦК происходит расслабление сфинктера Одди, сокращение жёлчного пузыря и как следствие увеличивается поступление желчи в 12.п.к. ХЦК вызывает сокращение пилорического сфинктера и ограничивает поступление желудочного химуса в 12 п.к., усиливает моторику тонкой кишки. Наиболее сильным стимулятором синтеза и выделения ХЦК являются пищевые жиры, белки, алкалоиды жёлчегонных трав. Пищевые углеводы не оказывают стимулирующего влияния на синтез и выделение ХЦК. К стимуляторам синтеза и выделения ХЦК относится также гастрин-рилизинг пептид.

Синтез и выделение ХЦК уменьшается под действием соматостатина – пептидного гормона. Соматостатин синтезируется и выделяется в кровь D-клетками, которые располагаются в желудке, кишечнике, среди эндокринных клеток поджелудочной железы (в островках Лангерганса). Соматостатин синтезирунтся также клетками гипоталамуса. Под действием соматостатина уменьшается не только синтез ХЦК. Под действием соматостатина уменьшается синтез и выделение других гормонов: гастрина, инсулина, глюкагона, вазоактивного интестинального полипептида, инсулиноподобного фактора роста-1, соматотропин-рилизинг-гормона, тиреотропных гормонов и других.

Уменьшает желудочную, жёлчную и панкреатическую секрецию, перистальтику желудочно-кишечного тракта Пептида YY. Пептида YY синтезируется L-клетками, которые размещены в слизистой оболочке толстой кишке и в конечной части тонкой кишки – в подвздошной кишке. Когда химус достигает подвздошной кишки жиры, углеводы и желчные кислоты химуса действуют на рецепторы L-клеток. L-клетки начинают синтезировать и выделять в кровь пептид YY. В результате перистальтика желудочно-кишечного тракта замедляется, желудочная, жёлчная и панкреатическая секреция уменьшается. Явление замедления перистальтики желудочно-кишечного тракта после достижения химусом подвздошной кишки получило название подвздошного тормоза. Стимулятором секреции пептида YY является также гастрин-рилизинг пептид.

D1(H)-клетки, которые размещены, в основном, в островках Лангерганса поджелудочной железы и, в меньшем количестве, в желудке, в толстой и в тонкой кишке синтезируют и выделяют в кровь вазоактивный интестинальный пептид (ВИП). ВИП оказывает выраженное расслабляющее действие на гладкомышечные клетки желудка, тонкой, толстой кишки, жёлчного пузыря, а также сосудов желудочно-кишечного тракта. Под действием ВИП увеличивается кровоснабжение желудочно-кишечного тракта. Под действием ВИП увеличивается секреция пепсиногена, кишечных ферментов, панкреатических ферментов, содержание гидрокарбонатов в соке поджелудочной железы, уменьшается секреция соляной кислоты.

Секреция поджелудочной железы увеличивается под действием гастрина, серотонина, инсулина. Стимулируют также выделение сока поджелудочной железы соли жёлчных кис¬лот. Уменьшают секрецию поджелудочной железы глюкагон, соматостатин, вазопрессин, адренокортикотропный гормон (АКТГ), кальцитонин.

К эндокринным регуляторам двигательной (моторной) функции желудочно-кишечного тракта относится гормон Мотилин. Мотилин синтезируют и выделяют в кровь энтерохромаффинные клетки слизистой оболочки 12 п.к. и тощей кишки. Стимулятором синтеза и выделения в кровь мотилина являются жёлчные кислоты. Мотилин в 5 раз сильнее стимулирует перистальтику желудка, тонкой и толстой кишки, чем медиатор парасимпатической ВНС ацетилхолин. Мотилин вместе с холицистокинином, управляет сократительной функцией жёлчного пузыря.

К эндокринным регуляторам двигательной (моторной) и секреторной функции кишечника относится гормон Серотонин, который синтезируется клетками кишечника. Под действием этого серотонина усиливается перистальтика и секреторная активность кишечника. Кроме того, кишечный серотонин является фактором роста для некоторых видов симбионтной микрофлоры кишечника. При этом симбионтная микрофлора принимает участие в синтезе кишечного серотонина декарбоксилируя триптофан, который является источником, сырьём для синтеза серотонина. При дисбактериозе и некоторых других заболеваниях кишечника синтез кишечного серотонина уменьшается.

Из тонкой кишки химус порциями (около 15 мл) поступает в толстую кишку. Регулирует это поступление илеоцекальный сфинктер (баугиниева заслонка). Раскрытие сфинктера происходит рефлекторно: перистальтика подвздошной кишки (конечной части тонкой кишки) повышает давление на сфинктер со стороны тонкой кишки, сфинктер расслабляется (открывается), химус поступает в слепую кишку (начальный отдел толстой кишки). При наполнении слепой кишки и её растяжении сфинктер закрывается, и химус обратно в тонкую кишку не возвращается.

Ваши комментарии по теме Вы можете разместить ниже.

Пищеварительный процесс считается сложным, многоступенчатым физиологическим процессом. Пища, попавшая в кишечник, подвергается механической и химической обработке. Благодаря ей организм насыщается питательными веществами и заряжается энергией. Этот процесс происходит благодаря правильной среде, которая находится в тонком кишечнике.

Не все люди задавались вопросом, какая среда в тонком кишечнике. Это неинтересно до тех пор, пока в организме не начнут происходить неблагоприятные процессы. Переваривание пищи подразумевает под собой механическую и химическую обработку. Второй процесс состоит из нескольких последовательных этапов расщепления сложных компонентов на мелкие элементы. После этого они всасываются в кровь.

Это происходит благодаря наличию ферментов. Катализаторы вырабатываются поджелудочными железами и попадают в желудочный сок. Их образование напрямую зависит от того, какая среда наблюдается в желудке, тонкой и толстой кишке.

Пищевой комок проходит через ротоглотку и пищевод, проникает в желудок в виде измельченной смеси. Под воздействием желудочного сока состав преобразуется в разжиженную массу, которая тщательно перемешивается благодаря перистальтическим движениям. После этого поступает в двенадцатиперстную кишку, повергается дальнейшей обработке ферментами.

Среда в тонком и толстом кишечнике

Среда в двенадцатиперстной кишке, а также в толстом кишечнике играет одну из основных ролей в организме. Как только она снижается, происходит понижение количества бифидо- лакто- и пропионобактерий. Это неблагоприятно сказывается на уровне кислых метаболитов, которые продуцируются бактериальными агентами для создания кислой среды в тонкой кишке. Таким свойством пользуются вредные микробы.

Кроме этого, патогенная флора ведет к вырабатыванию щелочным метаболитов, вследствие чего повышается рН среда. Тогда наблюдается защелачивание кишечного содержимого.

Метаболиты, которые вырабатывают вредные микробы, ведут к изменению рН в толстом кишечнике. На фоне этого развивается дисбактериоз.

Под этим показателем принято понимать количество потенциального водорода, которое выражает кислотность.

Среда в толстом кишечнике подразделяется на 3 разновидности.

  1. Если рН находится в пределах 1-6,9, то принято говорить о кислой среде.
  2. При значении 7 наблюдается нейтральная среда.
  3. Пределы от 7,1 до 14 говорят о щелочной среде.

Чем ниже рН-фактор, тем кислотность выше и наоборот.

Так как человеческий организм на 60-70% состоит из воды, этот фактор оказывает огромное влияние на химические процессы. Под несбалансированным рН-фактором принято понимать слишком кислую или щелочную среду в течение длительного времени. На самом деле это знать важно, ведь организм имеет функции самостоятельного контролирования щелочного баланса в каждой клетке. Выделение гормонов или обменные процессы направлены на его уравновешивание. Если этого не происходит, то клетки отравляют себя токсинами.

Среда толстой кишки должна всегда находиться на уровне. Именно она отвечает за урегулирование кислотности крови, мочи, влагалища, спермы и кожного покрова.

Химическая среда тонкого кишечника считается сложной. Кислый желудочный сок вместе с пищевым комком поступает из желудка в двенадцатиперстную кишку. Чаще всего там среда находится в пределах 5,6-8. Все зависит от того, какой участок пищеварительного тракта рассматривать.

В луковице двенадцатиперстной кишки рН составляет 5,6-7,9. В области тощей и подвздошной кишки наблюдается нейтральная или слабощелочная среда. Ее значение находится в пределах 7-8. Кислотность сока в тонкой кишке уменьшается до 7,2-7,5. При повышении секреторной функции уровень достигает 8,6. В дуоденальных железах диагностируется нормальная рН от 7 до 8.

Если этот показатель повышается или понижается, то значит формируется в кишечнике щелочная среда. Это неблагоприятно сказывается на состоянии слизистой оболочки внутренних органов. На фоне этого часто развиваются эрозивные или язвенные поражения.

Кислотность в толстом кишечнике находится в пределах 5,8-6,5 рН. Считается кислой средой. Если наблюдаются такие показатели, то значит в органе все нормально и заселена полезная микрофлора.

Бактериальные агенты в виде бифидобактерий, лактобактерий и пропионобактерий способствуют нейтрализации щелочных продуктов и выведению кислых метаболитов. Благодаря такому фактору продуцируются органические кислоты и снижается среда до нормального уровня. Но как только на организм повлияют неблагоприятные факторы, начнет размножаться патогенная флора.

В кислой среде вредные микробы не могут жить, поэтому они специально вырабатывают щелочные продукты метаболизма, которые направлены на защелачивание кишечного содержимого.

Симптоматическая картина при нарушении рН

Кишечник не всегда справляется со своей задачей. При регулярном воздействии неблагоприятных факторов происходит нарушение пищеварительной среды, микрофлоры и функциональности органа. Кислая среда заменяется на химическую щелочную.

Такой процесс обычно сопровождается:

  • дискомфортом в эпигастральной и абдоминальной полости после приема пищи;
  • тошнотой;
  • метеоризмом и вздутием живота;
  • разжижением или уплотнением стула;
  • появлением непереваренных частичек пищи в стуле;
  • зудом в аноректальной области;
  • развитием пищевой аллергии;
  • дисбактериозом или кандидозом;
  • расширением кровеносных сосудов в области щек и носа;
  • угревой сыпью;
  • ослабленными и расслаивающимися ногтями;
  • анемией в результате плохого всасывания железа.

Прежде чем начать лечение патологии, необходимо выяснить, что стало причиной понижения или повышения рН. Врачами выделяется несколько решающих факторов в виде:

  • наследственной предрасположенности;
  • наличия других заболеваний органов пищеварительной системы;
  • кишечных инфекций;
  • приема медикаментов из категории антибиотиков, гормональных и противовоспалительных средств;
  • регулярных погрешностей в питании: употребления жирных и жареных блюд, спиртосодержащих напитков, нехватки в рационе клетчатки;
  • дефицита витаминов и микроэлементов;
  • наличия пагубных привычек;
  • избыточного веса;
  • малоподвижного образа жизни;
  • регулярных стрессовых ситуаций;
  • нарушения моторной функциональности;
  • проблем с пищеварительной функцией;
  • трудностей со всасыванием;
  • воспалительных процессов;
  • появления новообразований злокачественного или доброкачественного характера.

По статистическим данным, такие проблемы наблюдаются у людей, которые проживают в развитых странах. Чаще симптомы нарушения рН в кишечнике диагностируются у женщин в возрасте старше 40 лет.

К самым распространенным патологиям относят следующие.

  1. Язвенный колит. Болезнь хронического характера, поражает слизистую оболочку толстого кишечника.
  2. Язву двенадцатиперстной кишки. Травмируется слизистая оболочка того отдела, который находится рядом с желудком. Сначала появляются эрозии. При отсутствии лечения они превращаются в язвочки и начинают кровоточить.
  3. Болезнь Крона. Поражение толстого кишечника. Наблюдается обширное воспаление. Может привести к осложнениям в виде образования свищей, лихорадочного состояния, поражения суставных тканей.
  4. Опухоли в пищеварительном тракте. Часто поражают толстую кишку. Могут иметь злокачественный или доброкачественный характер.
  5. Синдром раздраженной кишки. Неопасное для человека состояние. Но отсутствие медикаментозной терапии и лечебной диеты ведет к возникновению других болезней.
  6. Дисбактериоз. Изменяется состав кишечной микрофлоры. Вредные бактерии преобладают в большем количестве.
  7. Дивертикулез толстого кишечника. На стенках органа образуются небольшие мешочки, в которых могут застревать каловые массы.
  8. Дискинезия. Нарушается моторная функциональность тонкого и толстого кишечника. Причиной не является поражение органического характера. Наблюдается повышенное отделение слизи.

Лечение заключается в нормализации питания. Из рациона следует убрать все агрессивные продукты в виде спирто- и кофесодержащих напитков, жирных сортов мяса, жареных блюд, копченостей, маринадов. Также подключаются про- и пребиотики. В некоторых случаях требуются антибиотики и антациды.

Ткани живого организма весьма чувствительны к колебаниям показателя pH - за пределами допустимого диапазона, происходит денатурация белков: разрушаются клетки, ферменты теряют способность выполнять свои функции, возможна гибель организма

Что такое РН (водородный показатель) и кислотно-щелочное равновесие

Соотношение кислоты и щелочи в каком-либо растворе называется кислотно-щелочным равновесием (КЩР), хотя физиологи считают, что более правильно называть это соотношение кислотно-щелочным состоянием.

КЩР характеризуется специальным показателем рН (power Hydrogen - "сила водорода"), который показывает число водородных атомов в данном растворе. При рН равном 7,0 говорят о нейтральной среде.

Чем ниже уровень рН - тем среда более кислая (от 6,9 до О).

Щелочная среда имеет высокий уровень рН (от 7,1 до 14,0).

Тело человека на 70% состоит из воды, поэтому вода - это одна из наиболее важных его составляющих. Тело человека имеет определенное кислотно-щелочное соотношение, характеризуемое рН (водородным) показателем.

Значение показателя рН зависит от соотношения между положительно заряженными ионами (формирующими кислую среду) и отрицательно заряженными ионами (формирующими щелочную среду).

Организм постоянно стремится уравновесить это соотношение, поддерживая строго определенный уровень рН. При нарушенном балансе могут возникнуть множество серьезных заболеваний.

Соблюдайте правильный рН баланс для сохранения крепкого здоровья

Организм способен правильно усваивать и накапливать минералы и питательные вещества только при надлежащем уровне кислотно-щелочного равновесия. Ткани живого организма весьма чувствительны к колебаниям показателя pH - за пределами допустимого диапазона, происходит денатурация белков: разрушаются клетки, ферменты теряют способность выполнять свои функции, возможна гибель организма. Поэтому кисло́тно-щелочно́й баланс в организме жёстко регулируется.

Наш организм использует соляную кислоту для расщепления пищи. В процессе жизнедеятельности организма требуются как кислые, так и щелочные продукты распада , причем первых образуется больше чем вторых. Поэтому защитные системы организма, обеспечивающие неизменность его КЩР, "настроены" прежде всего на нейтрализацию и выведение прежде всего кислых продуктов распада.

Кровь имеет слабощелочную реакцию: pH артериальной крови составляет 7,4, а венозной - 7,35 (вследствие избытка С02).

Сдвиг рН хотя бы на 0,1 может привести к тяжелой патологии.

При сдвиге рН крови на 0,2 развивается коматозное состояние, на 0,3 - человек погибает.

Организм имеет разный уровень PH

Слюна - преимущественно щелочная реакция (колебание рН 6,0 - 7,9)

Обычно кислотность смешанной слюны человека равна 6,8–7,4 pH, но при большой скорости слюноотделения достигает 7,8 pH. Кислотность слюны околоушных желёз равна 5,81 pH, подчелюстных - 6,39 pH. У детей в среднем кислотность смешанной слюны равна 7,32 pH, у взрослых - 6,40 pH (Римарчук Г.В. и др.). Кислотно-щелочное равновесие слюны в свою очередь определяется аналогичным равновесием в крови, которая питает слюнные железы.

Пищевод - Нормальная кислотность в пищеводе 6,0–7,0 рН.

Печень - реакция пузырной желчи близка к нейтральной (рН 6,5 - 6,8), реакция печеночной желчи щелочная (рН 7,3 - 8,2)

Желудок - резко кислая (на высоте пищеварения рН 1,8 - 3,0)

Максимальная теоретически возможная кислотность в желудке 0,86 рН, что соответствует кислотопродукции 160 ммоль/л. Минимальная теоретически возможная кислотность в желудке 8,3 рН, что соответствует кислотности насыщенного раствора ионов HCO 3 - . Нормальная кислотность в просвете тела желудка натощак 1,5–2,0 рН. Кислотность на поверхности эпителиального слоя, обращённого в просвет желудка 1,5–2,0 рН. Кислотность в глубине эпителиального слоя желудка около 7,0 рН. Нормальная кислотность в антруме желудка 1,3–7,4 рН.

Распространено заблуждение, что основная проблема для человека - это повышенная кислотность желудка. От нее изжога и язва.

На самом деле, гораздо большую проблему представляет пониженная кислотность желудка, которая встречается во много раз чаще.

Главной причиной возникновения изжоги в 95% является не избыток, а недостаток соляной кислоты в желудке.

Недостаток соляной кислоты создает идеальные условия для колонизации кишечного тракта различными бактериями, простейшими и червями.

Коварство ситуации в том, что пониженная кислотность желудка "ведет себя тихо" и протекает незаметно для человека.

Вот перечень признаков, которые позволяют заподозрить снижение кислотности желудка.

  • Дискомфорт в желудке после еды.
  • Тошнота после приема лекарств.
  • Метеоризм в тонком кишечнике.
  • Послабления стула или запор.
  • Непереваренные частицы пищи в стуле.
  • Зуд вокруг ануса.
  • Множественные пищевые аллергии.
  • Дисбактериоз или кандидоз.
  • Расширенные кровеносные сосуды на щеках и носе.
  • Угри.
  • Слабые, расслаивающиеся ногти.
  • Анемии из-за плохого всасывания железа.

Разумеется, точный диагноз пониженной кислотности требует определения рН желудочного сока (для этого необходимо обратиться к гастроэнтерологу).

Когда кислотность повышена - существует масса препаратов для ее снижения.

В случае же пониженной кислотности эффективных средств очень мало.

Как правило, используются препараты соляной кислоты или растительные горечи, стимулирующие отделение желудочного сока (полынь, аир, мята перечная, фенхель и др.).

Поджелудочная железа - панкреатический сок слабощелочной (рН 7,5 - 8,0)

Тонкий кишечник - щелочная реакция (рН 8,0)

Нормальная кислотность в луковице двенадцатиперстной кишки 5,6–7,9 рН. Кислотность в тощей и подвздошной кишках нейтральная или слабощелочная и находится в пределах от 7 до 8 рН. Кислотность сока тонкой кишки 7,2–7,5 рН. При усилении секреции достигает 8,6 рН. Кислотность секрета дуоденальных желез - от рН от 7 до 8 рН.

Толстый кишечник - слабо-кислая реакция (5.8 - 6.5 pH)

Это слабо-кислая среда, которая поддерживается нормальной микрофлорой, в частности,бифидобактериями, лактобактериями и пропионобактерими за счет того, что они нейтрализуют щелочные продукты метаболизма и вырабатывают свои кислые метаболиты - молочную кислоту и другие органические кислоты. Продуцируя органические кислоты и снижая рН кишечного содержимого, нормальная микрофлора создает условия, при которых патогенные и условно-патогенные микроорганизмы не могут размножаться. Собственно поэтому стрептококки, стафилококки, клебсиеллы, клостридии грибы и другие “плохие” бактерии составляют всего 1% от всей микрофлоры кишечника здорового человека.

Моча - преимущественно слабо-кислая реакция (рН 4,5- 8)

При пище с животными белками, содержащими серу и фосфор, в основном в основном выделяется кислая моча (рН менее 5); в конечной моче присутствует значительное количество неорганических сульфатов и фосфатов. Если пища в основном молочная или растительная, то моча имеет тенденцию к защелачиванию (рН более 7). Почечные канальцы играют значительную роль в поддержании кислотно-основного равновесия. Кислая моча будет выделяться при всех состояниях, приводящих к метаболическому или дыхательному ацидозу, так как почки компенсируют сдвиги кислотно-основного состояния.

Кожа - слабо-кислая реакция (рН 4- 6)

Если кожа склонна к жирности, значение рН может приближаться к 5,5. А если кожа очень сухая, рН может составлять и 4,4.

Бактерицидное свойство кожи, придающее ей способность противостоять микробной инвазии, обусловлено кислой реакцией кератина, своеобразным химическим составом кожного сала и пота, наличием на ее поверхности защитной воднолипидной мантии с высокой концентрацией водородных ионов. Входящие в ее состав низкомолекулярные жирные кислоты, в первую очередь гликофосфолипиды и свободные жирные кислоты, обладают бактериостатическим эффектом, селективным для патогенных микроорганизмов.

Половые органы

Нормальная кислотность влагалища женщины колеблется от 3,8 до 4,4 pH и в среднем составляет 4,0–4,2 pH.

При рождении влагалище девочки стерильно. Затем в течение нескольких дней оно заселяется разнообразными бактериями, в основном стафилококками, стрептококками, анаэробами (то есть бактериями, для жизни которых не требуется кислород). До начала менструаций уровень кислотности (pH) влагалища близок к нейтральному (7,0). Но в период полового созревания стенки влагалища утолщаются (под влиянием эстрогена - одного из женских половых гормонов), рН снижается до 4,4 (т.е. кислотность повышается), что вызывает изменения во влагалищной флоре.

Полость матки в норме стерильна, и попаданию в нее болезнетворных микроорганизмов препятствуют лактобактерии, заселяющие влагалище и поддерживающие высокую кислотность его среды. Если по каким-либо причинам кислотность влагалища сдвигается в сторону щелочной, численность лактобактерий резко падает, а на их месте развиваются другие микробы, которые могут попасть в матку и привести к воспалению, а затем, и к проблемам с беременностью.

Сперма

Нормальный уровень кислотности спермы находится в пределах от 7,2 до 8,0 рН. Увеличение уровня рН спермы происходит при инфекционном процессе. Резко щелочная реакция спермы (кислотность примерно 9,0–10,0 рН) свидетельствует о патологии предстательной железы. При закупорке выводных протоков обоих семенных пузырьков отмечается кислая реакция спермы (кислотность 6,0–6,8 рН). Оплодотворяющая способность такой спермы снижена. В кислой среде сперматозоиды теряют подвижность и погибают. Если кислотность семенной жидкости становится меньше 6,0 рН, сперматозоиды полностью теряют подвижность и погибают.

Клетки и межклеточная жидкость

В клетках организма рН имеет значение около 7, во внеклеточной жидкости - 7,4. Нервные окончания, которые находятся вне клеток, очень чувствительны к изменению рН. При механических или термических повреждениях тканей стенки клеток разрушаются и их содержимое попадает на нервные окончания. В результате человек чувствует боль.

Скандинавский исследователь Олаф Линдал проделал такой эксперимент: с помощью специального безыгольного инъектора человеку впрыскивали сквозь кожу очень тонкую струйку раствора, которая не повреждала клетки, но действовала на нервные окончания. Было показано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается.

Аналогично непосредственно «действует на нервы» и раствор муравьиной кислоты, который жалящие насекомые или крапива впрыскивают под кожу. Разным значением рН тканей объясняется также, почему при некоторых воспалениях человек чувствует боль, а при некоторых - нет.


Интересно, что впрыскивание под кожу чистой воды дало особенно сильную боль. Объясняется это странное на первый взгляд явление так: клетки при контакте с чистой водой в результате осмотического давления разрываются и их содержимое воздействует на нервные окончания.

Таблица 1. Водородные показатели для растворов

Раствор

РН

HCl

1,0

H 2 SO 4

1,2

H 2 C 2 O 4

1,3

NaHSO 4

1,4

Н 3 РО 4

1,5

Желудочный сок

1,6

Винная кислота

2,0

Лимонная кислота

2,1

HNO 2

2,2

Лимонный сок

2,3

Молочная кислота

2,4

Салициловая кислота

2,4

Столовый уксус

3,0

Сок грейпфрута

3,2

СО 2

3,7

Яблочный сок

3,8

H 2 S

4,1

Моча

4,8-7,5

Черный кофе

5,0

Слюна

7,4-8

Молоко

6,7

Кровь

7,35-7,45

Желчь

7,8-8,6

Вода океанов

7,9-8,4

Fe(OH) 2

9,5

MgO

10,0

Mg(OH) 2

10,5

Na 2 CO 3

Ca(OH) 2

11,5

NaOH

13,0

Особенно чувствительны к изменению рН среды икра рыб и мальки. Таблица позволяет сделать ряд интересных наблюдений. Значения рН, например, сразу показывают сравнительную силу кислот и оснований. Хорошо видно также сильное изменение нейтральной среды в результате гидролиза солей, образованных слабыми кислотами и основаниями, а также при диссоциации кислых солей.

рН мочи не является хорошим показателем общего рН тела, и это не хороший показатель общего здоровья.

Другими словами, независимо от того, что вы едите и при любом рН мочи, вы можете быть абсолютно уверен, что ваш рН артериальной крови всегда будет около 7,4.

При употреблении человеком, например, кислых продуктов или животного белка, под влиянием буферных систем рН смещается в кислую сторону (становится меньше 7), а при употреблении, например, минеральной воды или растительной пищи - в щелочную (становится больше 7). Буферные системы удерживают рН в допустимом для организма диапазоне.

Кстати, врачи утверждают, что смещение в кислотную сторону (тот самый ацидоз) мы переносим гораздо легче, чем смещение в щелочную (алкалоз).

Сместить pH крови каким-либо внешним воздействием невозможно.

ОСНОВНЫМИ МЕХАНИЗМАМИ ПОДДЕРЖАНИЯ РН КРОВИ ЯВЛЯЮТСЯ:

1. Буферные системы крови (карбонатная, фосфатная, белковая, гемоглобиновая)

Этот механизм действует очень быстро (доли секунды) и потому относится к быстрым механизмам регуляции устойчивости внутренней среды.

Бикарбонатный буфер крови достаточно мощный и наиболее мобильный.

Одним из важных буферов крови и других жидкостей организма является бикарбонатная буферная система (HCO3/СO2): СO2 + H2O ⇄ HCO3- + Н+ Основная функция бикарбонатной буферной системы крови - нейтрализация ионов Н+. Эта буферная система играет особо важную роль, поскольку концентрации обоих буферных компонентов можно регулировать независимо друг от друга; [СO2] - путем дыхания, - в печени и в почках. Таким образом, это открытая буферная система.

Буферная система гемоглобина самая мощная.
На ее долю приходится более половины буферной емкости крови. Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННЬ) и его калиевой соли (КНЬ).

Белки плазмы благодаря способности аминокислот к ионизации также выполняют буферную функцию (около 7% буферной емкости крови). В кислой среде они ведут себя как основания, связывающие кислоты.

Фосфатная буферная система (около 5% буферной емкости крови) образуется неорганическими фосфатами крови. Свойства кислоты проявляет одноосновный фосфат (NaH 2 P0 4), а основания - двухосновный фосфат (Na 2 HP0 4). Функционируют они по такому же принципу, как и бикарбонаты. Однако в связи с низким содержанием в крови фосфатов емкость этой системы невелика.

2. Респираторная (легочная) система регуляции.

Благодаря легкости, с которой легкие регулируют концентрацию С02, эта система обладает значительной буферной емкостью. Удаление избыточных количеств СO 2 , регенерация бикарбонатной и гемоглобиновой буферных систем осуществляются легкими.

В покое человек выделяет 230 мл углекислого газа в минуту, или около 15 тысяч ммоль в день. При удалении углекислого газа из крови исчезает примерно эквивалентное количество ионов водорода. Поэтому дыхание играет важную роль в поддержании кислотно - щелочного равновесия. Так, если кислотность крови увеличивается, то повышение содержания ионов водорода приводит к возрастанию легочной вентиляции (гипервентиляция), при этом молекулы углекислого газа выводятся в большом количестве и рН возвращается к нормальному уровню.

Увеличение содержания оснований сопровождается гиповентиляцией, в результате чего возрастает концентрация углекислого газа в крови и, соответственно, концентрация ионов водорода, и сдвиг реакции крови в щелочную сторону частично или полностью компенсируется.

Следовательно, система внешнего дыхания довольно быстро (в течение нескольких минут) способна устранить или уменьшить сдвиги рН и предотвратить развитие ацидоза или алкалоза: увеличение вентиляции лёгких в 2 раза повышает рН крови примерно на 0,2; снижение вентиляции на 25% может уменьшить рН на 0,3-0,4.

3. Почечная (выделительная система)

Действует очень медленно (10-12 ч). Но этот механизм наиболее мощный и способен полностью восстановить pH организма, удалив мочу со щелочными или кислыми значениями pH. Участие почек в поддержании кислотно-основного равновесия заключается в удалении из организма ионов водорода, реабсорбции бикарбоната из канальцевой жидкости, синтезе бикарбоната при его недостатке и удалении - при избытке.

К главным механизмам уменьшения или устранения сдвигов КЩР крови, реализуемых нефронами почек, относят ацидогенез, аммони-огенез, секрецию фосфатов и К+,Ка+-обменный механизм.

Механизм регуляции рН крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем . Так, если в результате повышенного образования Н 2 С0 3 или других кислот будут появляться излишки анионов, то они сначала нейтрализуются буферными системами. Параллельно интенсифицируется дыхание и кровообращение, что приводит к увеличению выделения углекислого газа легкими. Нелетучие кислоты в свою очередь выводятся с мочой или потом.

В норме рН крови может изменяться лишь на короткое время. Естественно, что при поражении легких или почек функциональные возможности организма по поддержанию рН на должном уровне снижаются. В случае появления в крови большого количества кислых или основных ионов только буферные механизмы (без помощи систем выделения) не удержат рН на константной уровне. Это приводит к ацидозу или алкалозу. опубликовано

©Ольга Бутакова «Кислотно-щелочное равновесие - основа жизни»

Подробности

В тонкой кишке происходит перемешивание кислого химуса со щелочными секретами поджелудочной железы , кишечных желез и печени , деполимеризация питательных веществ до конечных продуктов (мономеров ), способных поступать в кровоток, продвижение химуса в дистальном направлении, экскреция метаболитов и др.

Пищеварение в тонком кишечнике.

Полостное и пристеночное пищеварение осуществляется ферментами секретов поджелудочной железы и кишечного сока с участием желчи . Образующийся панкреатический сок поступает через систему выводных протоков в двенадцатиперстную кишку . Состав и свойства панкреатического сока зависят от количества и качества пищи.

У человека в сутки вырабатывается 1,5-2,5 л панкреатического сока , изотоничного плазме крови, щелочной реакции (рН 7,5-8.8). Такая реакция обусловлена содержанием ионов бикарбоната , которые обеспечивают нейтрализацию кислого желудочного содержимого и создают в двенадцатиперстной кишке щелочную среду, оптимальную для действия панкреатических ферментов.

Панкреатический сок содержит ферменты для гидролиза всех видов питательных веществ : белков, жиров и углеводов. Протеолитические ферменты поступают в двенадцатиперстную кишку в виде неактивных проферментов - трипсиногенов, химотрипсиногенов, прокарбооксипептидаз А и В, эластазы и др., которые активируются энтерокиназой (энзимом энтероцитов бруннеровеких желез).

В соке поджелудочной железы содержатся липолитические ферменты , которые выделяются в неактивном (профосфолипаза А) и активном (липаза) состоянии.

Панкреатическая липаза гидролизует нейтральные жиры до жирных кислот и моноглицеридов, фосфолипаза А расщепляет фосфолипиды до жирных кислот и ионов кальция.

Панкреатическая альфа-амилаза расщепляет крахмал и гликоген, в основном до лисахаропдов и - частично - моносахаридов. Дисахариды далее, под влиянием мальтазы и лактазы, превращаются в моносахариды (глюкозу, фруктозу, галактозу).

Гидролиз рибонуклеиновой кислоты происходит под влиянием панкреатической рибонуклеазы , а гидролиз дезоксирибонуклеиновой кислоты - под влиянием дезокенрибонуклеазы.

Секреторные клетки поджелудочной железы вне периода пищеварения находятся в состоянии покоя и отделяют сок лишь в связи с периодической деятельностью ЖКТ. В ответ на потребление белковой и углеводной пиши (мясо, хлеб) наблюдается резкое увеличение секреции в первые два часа, с максимумом отделения сока на втором часе после приема пищи. В этом случае продолжительность секреции может быть от 4-5 ч (мясо) до 9-10 ч (хлеб). При приеме жирной пищи максимальный подъем секреции имеет место на третьем часе, продолжительность секреции на этот стимул равна 5 ч.

Таким образом, количество и состав секрета поджелудочной железы зависят от количества и качества пиши , контролируются рецептивными клетками кишечника, и в первую очередь двенадцатиперстной кишки. Функциональная взаимосвязь поджелудочной железы, двенадцатиперстной кишки и печени с желчными ходами основывается на общности их иннервации и гормональной регуляции.

Секреция поджелудочной железы происходит пол воздействием нервных влияний и гуморальных раздражителей, возникающих при поступлении пищи в пищеварительный тракт, а также при виде, запахе пиши и при действии привычной обстановки ее приема. Процесс отделения поджелудочного сока условно разделяется на мозговую, желудочную и кишечную сложнорефлекторную фазу. Поступление пищи в полость рта и глотки вызывает рефлекторное возбуждение пищеварительных желез, в том числе секрецию поджелудочной железы.

Секрецию поджелудочной железы стимулируют поступающие в двенадцатиперстную кишку HCI и продукты переваривания пиши . Стимуляция ее продолжается при поступлении желчи. Однако поджелудочную железу в этой фазе секреции преимущественно стимулируют кишечные гормоны секретин и холецистокинин. Под влиянием секретина вырабатывается большое количество сока поджелудочной железы, богатого бикарбонатами и бедного ферментами, холецистокинин стимулирует секрецию панкреатического сока, богатого ферментами. Богатый ферментами панкреатический сок секретируется лишь при совместном действии па железу секретина и холецистокинина. потенцированных ацетилхолином.

Роль желчи в пищеварении.

Желчь в двенадцатиперстной кишке создает благоприятные условия для активности ферментов поджелудочной железы, особенно липаз . Желчные кислоты эмульгируют жиры , снижая поверхностное натяжение капель жира, что создает условия для образования тонкодисперсных частиц, способных всасываться без предварительного гидролиза , способствуют увеличению контакта жиров с липолитическими ферментами. Желчь обеспечивает всасывание в тонкой кишке нерастворимых в воде высших жирных кислот, холестерина , жирорастворимых витаминов (D, Е, К, А) и солей кальция , усиливает гидролиз и всасывание белков и углеводов, способствует ресинтезу триглицеридов в энтероцитах.

Желчь оказывает стимулирующее влияние на деятельность кишечных ворсинок , в результате чего повышается скорость абсорбции веществ в кишке, участвует в пристеночном пищеварении, создавая благоприятные условия для фиксации ферментов на кишечной поверхности . Желчь является одним из стимуляторов секреции поджелудочной железы, сока тонкой кишки, желудочной слизи, наряду с ферментами участвуете процессах кишечного пищеварения, предупреждает развитие гнилостных процессов, оказывает бактериостатическое действие на кишечную флору. Суточная секреция желчи у человека составляет 0,7-1,0 л. Составными ее частями являются желчные кислоты, билирубин, холестерин, неорганические соли, жирные кислоты и нейтральные жиры, лецитин.

Роль секрета желез тонкой кишки в пищеварении.

В сутки у человека выделяется до 2,5 л кишечного сока , являющегося продуктом деятельности клеток всей слизистой оболочки тонкой кишки, бруннеровских и либеркюновых желез . Отделение кишечного сока связано с гибелью железистых меток. Непрерывное отторжение погибших клеток сопровождается их интенсивным новообразованием. В кишечном соке содержатся ферменты, участвующие в пищеварении . Они гидролизируют пептиды и пептоны до аминокислот, жиры - до глицерина и жирных кислот, углеводы - до моносахаридов. Важным ферментом в кишечном соке является энтерокиназа, активирующая панкреатический трипсиноген.

Пищеварение в тонкой кишке является трехзвеньевой системой ассимиляции пищи: полостное пищеварение - мембранное пищеварение - всасывание .
Полостное пищеварение в тонкой кишке осуществляется за счет пищеварительных секретов и их энзимов, которые поступают в полость тонкой кишки (панкреатический секрет, желчь, кишечный сок) и действуют на пищевое вещество, прошедшее ферментную обработку в желудке.

Ферменты, участвующие в мембранном пищеварении, имеют различное происхождение. Часть их абсорбируется из полости тонкой кишки (ферменты панкреатического и кишечного сока ), другие, фиксированные на цитоплазматических мембранах микроворсинок, являются секретом энтероцитов и работают более длительно, чем те, которые поступили из полости кишечника. Основным химическим стимулятором секреторных клеток желез слизистой оболочки тонкой кишки являются продукты переваривания белка желудочным и поджелудочным соками, а также жирные кислоты, дисахариды. Действие каждого химического раздражителя вызывает выделение кишечного сока с определенным набором ферментов. Так, например, жирные кислоты стимулируют образование кишечными железами липазы, диета со сниженным содержанием белка приводит к резкому снижению активности энтерокиназы в кишечном соке. Однако не все кишечные ферменты участвуют в процессах специфического ферментного приспособления. Образование липазы в слизистой оболочке кишечника не меняется ни при повышенном, ни при пониженном содержании жира в пище. Выработка пептидаз также не претерпевает существенных изменений, даже при резком недостатке белка в рационе питания.

Особенности пищеварения в тонкой кишке.

Функциональной единицей является крипта и ворсинка . Ворсинка – это вырост слизистой оболочки кишки, крипта – наоборот, углубление.

КИШЕЧНЫЙ СОК слабо-щелочной (рН=7.5-8), состоит из двух частей:

(а) жидкая часть сока (вода, соли, без ферментов) секретируется клетками крипт;

(б) плотная часть сока («слизистые комочки») состоит из клеток эпителия, которые непрерывно слущиваются с вершины ворсинок.(Вся слизистая оболочка тонкой кишки полностью обновляется за 3-5 дней).

В плотной части находится более 20 ферментов. Часть ферментов адсорбирована на поверхности гликокаликса (кишечные, панкреатические ферменты), другая часть ферментов входит в состав клеточной мембраны микроворсинок.. (Микроворсинка – это вырост клеточной мембраны энтероцитов. Микроворсинки формируют «щеточную каемку», что значительно увеличивает площадь, на которой происходит гидролиз и всасывание). Ферменты высоко специализированы, необходимы для заключительных стадий гидролиза.

В тонком кишечнике происходит полостное и пристеночное пищеварение .
а) Полостное пищеварение – расщепление крупных полимерных молекул до олигомеров в полости кишечника под действием ферментов кишечного сока.
б) Пристеночное пищеварение – расщепление олигомеров до мономеров на поверхности микроворсинок под действием ферментов, фиксированных на этой поверхности.

Толстая кишка и ее роль в пищеварении.

Под влиянием моторной деятельности тонкой кишки от 1,5 до 2 л химуса через илеоцекальную заслонку поступает в толстую кишку (колоректальный отдел ЖКТ) , где продолжается утилизация необходимых для организма веществ, экскреция метаболитов и солей тяжелых металлов , накопление обезвоженного кишечного содержимого и удаление его из организма. Этот отдел кишечника обеспечивает иммунобиологическую и конкурентную защиту ЖКТ от патогенных микробов и участие нормальной кишечной микрофлоры в пищеварении (ферментативный гидролиз, синтез и всасывание моносахаридов, витаминов Е, А, К, D и группы В). Толстый кишечник способен частично компенсировать нарушение пищеварения проксимальных отделов пищеварительного тракта.

Ферментовыделительный процесс в толстой кишке , как и в тонкой, состоит из образования и накопления ферментов в эпителиальных клетках с последующим их отторжением, распадом и переходом ферментов в полость кишки. В соке толстой кишки в небольшом количестве присутствуют пептидазы, катепсин, амилаза, липаза, нуклеаза, щелочная фосфатаза. В процессе гидролиза в толстой кишке принимают участие и энзимы, поступающие с пищевым химусом из тонкой кишки, но их значение невелико. Большую роль в обеспечении гидролиза остатков питательных веществ, поступающих из тонкого кишечника, играет ферментативная активность нормальной кишечной микрофлоры . Местами обитания нормальных микроорганизмов являются терминальная часть подвздошной кишки и проксимальные отделы толстой кишки.

Преобладающими микробами в толстой кишке взрослого здорового человека являются бесспоровые облигатно-анаэробные палочки (бифидумбактерии, составляющие 90% всей флоры кишки) и факультативно-анаэробные бактерии (кишечная палочка, молочнокислые бактерии, стрептококки) . Кишечная микрофлора участвует в осуществлении защитной функции макроорганизма, обусловливает выработку факторов естественного иммунитета , предохраняет в ряде случаев организм хозяина от внедрения и размножения патогенных микробов. Нормальная кишечная микрофлора может расщеплять гликоген и крахмал до моносахаридов, эфиры желчных кислот и другие присутствующие в химусе соединения с образованием ряда органических кислот, аммонийных солей, аминов и др. Кишечные микроорганизмы синтезируют витамин К, Е и витамины группы В (В1 В6, В12) и др.

Микроорганизмы сбраживают углеводы до кислых продуктов (молочной и уксусной кислоты), а также алкоголя. Конечными же продуктами гнилостного бактериального разложения белков служат токсичные (индол, скатол) и биологически активные амины (гистамин, тирамин), водород, сернистый газ и метан. Продукты брожения и гниения, а также, образующиеся газы стимулируют моторную активность кишки, обеспечивая ее опорожнение (акт дефекации).

Особенности пищеварения в толстом кишечнике.

Ворсинок нет, имеются только крипты . Жидкий кишечный сок практически не содержит ферментов. Слизистая оболочка толстой кишки обновляется за 1-1.5 месяца.
Важное значение имеет нормальная микрофлора толстого кишечника :

(1) брожение клетчатки (образуются короткоцепочечные жирные кислоты, которые необходимы для питания эпителиальных клеток самой толстой кишки);

(2) гниение белков (кроме токсических веществ образуются биологически активные амины);

(3) синтез витаминов группы В;

(4) подавление роста патогенной микрофлоры.

В толстом кишечнике происходит всасывание воды и электролитов , в результате чего из жидкого химуса формируется небольшое количество плотных масс. 1-3 раза в день мощное сокращение толстой кишки приводит к продвижению содержимого в прямую кишку и выведению его наружу (дефекация).

Дисбактериоз – любые изменения количественного или качественного нормального состава кишечной микрофлоры…

В результате изменения pH среды кишечника (снижение кислотности), возникающие на фоне уменьшения количества бифидо-, лакто- и пропионобактерий по различным причинам… Если количество бифидо-, лакто-, пропионобактерий уменьшается, то, соответственно, уменьшается и количество кислых метаболитов, продуцируемых этими бактериями для создания кислой среды в кишечнике… Этим пользуются патогенные микроорганизмы и начинают активно размножаться (патогенные микробы не выносят кислой среды)…

…более того, патогенная микрофлора сама вырабатывает щелочные метаболиты, которые повышают pH среды (снижение кислотности, повышение щелочности), происходит защелачивание кишечного содержимого, а это и есть благоприятная среда для обитания и размножения патогенных бактерий.

Метаболиты (токсины) патогенной флоры изменяют рН в кишечнике, опосредованно вызывая дисбактериоз, поскольку вследствие этого становится возможным внедрение чужеродных для кишечника микроорганизмов, а нормальное заполнение кишечника бактериями нарушается. Таким образом, возникает своеобразный замкнутый круг, только усугубляющий течение патологического процесса.

На нашей диаграмме понятие “дисбактериоз” можно описать так:

По различным причинам количество бифидобактерий и(или) лактобактерий снижается, что проявляется в размножении и росте патогенных микробов (стафилококки, стрептококки, клостридии, грибки и т.д.) остаточной микрофлоры с их патогенными свойствами.

Также уменьшение бифидо- и лактобактерий может проявляться ростом сопутствующей патогенной микрофлоры (кишечная палочка, энтерококки), вследствие чего они начинают проявлять патогенные свойства.

Ну и конечно в некоторых случаях не исключается ситуация когда полезная микрофлора полностью отсутствует.

Это собственно и есть варианты различных “сплетений” дисбактериоза кишечника.

Что такое рН и кислотность? Важно!

Любые растворы и жидкости характеризуются водородным показателем pH (pH - potential hydrogen - потенциальный водород), количественно выражающим их кислотность.

Если уровень pH находится в пределах

От 1,0 до 6,9, то среда называется кислой;

Равна 7,0 - нейтральная среда;

При уровне pH от 7,1 до 14,0 среда является щелочной.

Чем ниже pH фактор, тем выше кислотность, чем выше pH, тем выше щелочность среды и ниже кислотность.

Так как организм человека на 60-70% состоит из воды, уровень pH оказывает сильнейшее влияние на химические процессы, происходящие в организме, а, соответственно, и на здоровье человека. Несбалансированый pH-фактор - это уровень pH, при котором среда организма становится слишком кислой или слишком щелочной на длительный промежуток времени. Действительно, управление уровнем pH настолько важно, что организм человека сам развил функции контроля кислотно-щелочного баланса в каждой клетке. Все регулирующие механизмы организма (включая дыхание, обмен веществ, производство гармонов) направлены на уравновешивание уровня pH. Если уровень pH становится слишком низким (кислым) или слишком высоким (щелочным), то клетки организма отравляют сами себя своими токсичными выбросами и погибают.

В организме уровень pH регулирует кислотность крови, кислотность мочи, кислотность влагалища, кислотность спермы, кислотность кожи и т.д. Но нас с Вами сейчас интересует уровень pH и кислотность толстой кишки, носоглотки и рта, желудка.

Кислотность в толстой кишке

Кислотность в толстой кишке: 5.8 - 6.5 pH, это кислая среда, которая поддерживается нормальной микрофлорой, в частности, как я уже упомянул, бифидобактериями, лактобактериями и пропионобактерими за счет того, что они нейтрализуют щелочные продукты метаболизма и вырабатывают свои кислые метаболиты - молочную кислоту и другие органические кислоты...

…Продуцируя органические кислоты и снижая рН кишечного содержимого, нормальная микрофлора создает условия, при которых патогенные и условно-патогенные микроорганизмы не могут размножаться. Собственно поэтому стрептококки, стафилококки, клебсиеллы, клостридии грибы и другие “плохие” бактерии составляют всего 1% от всей микрофлоры кишечника здорового человека.

  1. Дело в том, что патогенные и условно-патогенные микробы не могут существовать в кислой среде и специально вырабатывают те самые щелочные продукты метаболизма (метаболиты), направленные на защелачивание кишечного содержимого за счет повышения уровня pH, для создания себе благоприятных условий существования (увел. pH - следовательно - умен. кислотность - следовательно - защелачивание). Еще раз повторю, что бифидо-, лакто- и пропионобактерии нейтрализуют эти щелочные метаболиты, плюс к этому они же сами вырабатывают кислотные метаболиты, снижающие уровень pH и увеличивающие кислотность среды, тем самым, создавая благоприятные условия для своего существования. Отсюда и возникает извечное противостояние “хороших” и “плохих” микробов, которое регулируется дарвиновским законом: “выживает сильнейший”!

К примеру,

  • Бифидобактерии способны снижать pH среды кишечника до 4,6-4,4;
  • Лактобактерии до 5,5-5,6 pH;
  • Пропионобактерии способны понижать уровень pH до 4,2-3.8, в этом собственно и заключается их основная функция. Пропионокислые бактерии производят органические кислоты (пропионовую кислоту), как конечный продукт своего анаэробного метаболизма.

Как Вы видите, все эти бактерии являются кислотообразующими, именно по этой причине их часто называют “кислотообразователи” или нередко просто - “молочнокислые бактерии”, хотя те же пропионовые бактерии не молочно-, а пропионовокислые бактерии…

Кислотность в носоглотке, во рту

Как я уже отмечал в главе, в которой мы разбирали функции микрофлоры верхних дыхательных путей: одной из функций микрофлоры носа, глотки и горла является регуляторная функция, т.е. нормальная микрофлора верхних дыхательных путей участвует в регуляции поддержания уровня pH среды…

…Но если “регуляцию pH в кишечнике” выполняет только нормальная микрофлора кишечника (бифидо-, лакто- и пропионобактерии), и это является одной из основных ее функций, то в носоглотке и во рту функцию “регуляции pH” выполняет не только нормальная микрофлора этих органов, а также слизистые секреты: слюна и сопли…

  1. Вы уже заметили, что состав микрофлоры верхних дыхательных путей значительно отличается от микрофлоры кишечника, если в кишечнике здорового человека преобладают полезная микрофлора (бифидо- и лактобактерии), то в носоглотке, в горле преимущественно обитают условно-патогенные микроорганизмы (нейссерии, коринебактерии, др.), лакто- и бифидобактерии присутствуют там в незначительном количестве (бифидобактерии кстати могут вообще отсутствовать). Такой разностный состав микрофлоры кишечника и дыхательных путей обусловлен тем, что они выполняют разные функции и задачи (функции микрофлоры верхних дыхательных путей см. гл.17).

Итак, кислотность в носоглотке определяет ее нормальная микрофлора, а также слизистые секреты (сопли) - выделения, которые вырабатывают железы эпитеальной ткани слизистых оболочек дыхательных путей. Нормальный рН (кислотность) слизи составляет 5,5-6,5, это кислая среда. Соответственно, pH в носоглотке у здорового человека имеет эти же значения.

Кислотность рта и горла определяет их нормальная микрофлора и слизистые секреты, в частности, слюна. Нормальная pH слюны составляет 6,8-7,4 pH, соответственно, pH во рту и в горле принимает эти же значения.

1. Уровень pH в носоглотке и во рту зависит от ее нормальной микрофлоры, которая зависит от состояния кишечника.

2. Уровень pH в носоглотке и во рту зависит от pH слизистых секретов (сопли и слюна), данная рH в свою очередь также зависит от сбалансированности состояния нашего кишечника.

Кислотность желудка в среднем составляет 4.2-5.2 pH, это очень кислая среда (иногда в зависимости от пищи которую мы принимаем pH может колебаться в пределах 0,86 - 8,3). Микробный состав желудка очень беден и представлен небольшим количеством микроорганизмов (лактобактерии, стрептококки, хеликобактерии, грибы), т.е. бактериями, способными выдержать столь сильную кислотность.

В отличие от кишечника, где кислотность создает нормальная микрофлора (бифидо-, лакто- и пропионобактерии), а также в отличие от носоглотки и рта, где кислотность создают нормальная микрофлора и слизистые секреты (сопли, слюна), главный вклад в общую кислотность желудка вносит желудочный сок - соляная кислота, которую продуцируют клетки желез желудка, располагающиеся в основном в области дна и тела желудка.

Итак, это было важное отступление про “pH”, сейчас продолжаем.

В научной литературе различают, как правило, четыре микробиологические фазы в развитии дисбактериоза…

Какие именно существуют фазы в развитии дисбактериоза, Вы узнаете из следующей главы, также узнаете о формах и о причинах этого явления, и о таком виде протекания дисбиоза, когда нет никаких симптомов со стороны ЖКТ.

Комментарии

cc-t1.ru

Пищеварение в тонкой кишке - Медицинский портал о здоровье и профилактике заболеваний

Для дальнейшего пищеварения содержимое желудка поступает в двенадцатиперстную кишку (12 п.к.) – начальную часть тонкой кишки.

Из желудка в 12 п.к. может поступить только химус – пища, обработанная до состояния жидкой или полужидкой консистенции.

Пищеварение в 12 п.к. осуществляется в нейтральной или щёлочной среде (натощак рН 12 п.к. составляет 7,2-8,0). Пищеварение в желудке осуществлялось в кислой среде. Поэтому содержимое желудка имеет кислую реакцию. Нейтрализация кислой среды желудочного содержимого и установление щёлочной среды осуществляется в 12 п.к. за счет поступающих в кишку секретов (соков) поджелудочной железы, тонкой кишки и желчи, которые имеют щёлочную реакцию за счёт присутствующих в них гидрокарбонатов.

Химус из желудка в 12 п.к. поступает небольшими порциями. Раздражение соляной кислотой рецепторов пилорического сфинктера со стороны желудка приводит к его раскрытию. Раздражение соляной кислотой рецепторов пилорического сфинктера со стороны 12 п.к. приводит к его закрытию. Как только рН в пилорической части 12 п.к. изменяется в кислую сторону, пилорический сфинктер сокращается и поступление химуса из желудка в 12 п.к. прекращается. После восстановления щёлочной рН (в среднем за 16 сек), пилорический сфинктер пропускает очередную порцию химуса из желудка и так далее. В 12 п.к. рН колеблется от 4 до 8.

В 12 п.к. после нейтрализации кислой среды желудочного химуса прекращается действие пепсина – фермента желудочного сока. Пищеварение в тонком кишечнике продолжается уже в щёлочной среде под действием ферментов, которые поступают в просвет кишки в составе секрета (сока) поджелудочной железы, а также в составе кишечного секрета (сока) от энтероцитов – клеток тонкой кишки. Под действием ферментов поджелудочной железы осуществляется полостное пищеварение – расщепление в полости кишки пищевых белков, жиров и углеводов (полимеров) до промежуточных веществ (олигомеров). Под действием ферментов энтероцитов осуществляется пристеночное (около внутренней стенки кишки) олигомеров до мономеров, то есть окончательное расщепление пищевых белков, жиров и углеводов на составляющие компоненты, которые поступают (всасываются) в кровеносную и лимфатическую систему (в кровоток и лимфоток).

Для пищеварения в тонкой кишке также необходима желчь, которая производится клетками печени (гепатоцитами) и поступает в тонкую кишку по желчным (жёлчным) путям (жёлчевыводящим путям). Основной компонент желчи – жёлчные кислоты и их соли необходимы для эмульгирования жиров, без которого нарушается, замедляется процесс расщепления жиров. Жёлчные пути подразделяются на внутри- и внепечёночные. Внутрипечёночные жёлчные пути (протоки) представляют собой древовидную систему трубочек (протоков), по которым оттекает от гепатоцитов желчь. Мелкие жёлчные протоки соединены с более крупным протоком, совокупность более крупных протоков образует ещё более крупный проток. Завершают это объединение в правой доле печени – жёлчный проток правой доли печени, в левой – жёлчный проток левой доли печени. Жёлчный проток правой доли печени называют правым жёлчным протоком. Жёлчный проток левой доли печени называют левым жёлчным протоком. Эти два протока образуют общий печёночный проток. У ворот печени общий печёночный проток соединятся с пузырным жёлчным протоком, образуя общий жёлчный проток, который направляется к 12 п.к. По пузырному жёлчному протоку жёлчь оттекает от жёлчного пузыря. Жёлчный пузырь представляет собой резервуар для хранения желчи, образуемой клетками печени. Жёлчный пузырь расположен на нижней поверхности печени, в правой продольной борозде.

Секрет (сок) поджелудочной железы образуется (синтезируется) ацинозными панкреоцитами (клетками поджелудочной железы), которые структурно объединены в ацинусы. Клетки ацинуса образуют (синтезируют) сок поджелудочной железы, который поступает в выводной проток ацинуса. Соседние ацинусы разделены тонкими прослойками соединительной ткани, в которой расположены кровеносные капилляры и нервные волокна вегетативной нервной системы. Протоки соседних ацинусов сливаются в межацинозные протоки, которые, в свою очередь, впадают в более крупные внутридольковые и междольковые протоки, лежащие в соединительнотканных перегородках. Последние, сливаясь, образуют общий выводной проток, который проходит от хвоста железы к головке (структурно в поджелудочной железе выделяют головку, тело и хвост). Выводной проток (Вирсунгиев проток) поджелудочной железы вместе с общим жёлчным протоком косо пронизывает стенку нисходящей части 12 п.к. и открывается внутри 12 п.к. на слизистой оболочке. Это место называется большим (фатеровым) сосочком. В этом месте находится гладкомышечный сфинктер Одди, который также функционирует по принципу ниппеля – пропускает из протока желчь и сок поджелудочной железы в 12 п.к. и перекрывает поступление содержимого 12 п.к. в проток. Сфинктер Одди сложный сфинктер. Он состоит из сфинктера общего жёлчного протока, сфинктера панкреатического протока (протока поджелудочной железы) и сфинктера Вестфаля (сфинктера большого дуоденального сосочка), обеспечивающего разобщение обоих протоков с 12 п.к.. Иногда на 2 см выше от большого сосочка расположен малый сосочек – образованный добавочным, непостоянным малым (Санториниевым) протоком поджелудочной железы. В этом месте находится сфинктер Хелли.

Сок поджелудочной железы представляет собой бесцветную прозрачную жидкость, которая имеет щёлочную реакцию (рН 7,5-8,8) за счёт содержания в нём гидрокарбонатов. Сок поджелудочной железы содержит ферменты (амилаза, липаза, нуклеаза и другие) и проферменты (трипсиноген, химотрипсиноген, прокарбоксипептидазы А и В, проэластазы и профосфолипаза и другие). Проферменты представляют собой неактивную форму фермента. Активация проферментов поджелудочной железы (превращение их в активную форму – фермент) происходит в 12 п.к.

Эпителиальные клетки 12 п.к. – энтероциты синтезируют и выделяют в просвет кишки фермент киназоген (профермент). Под действием жёлчных кислот киназоген превращается в энтеропептидазу (фермент). Энтерокиназа отщепляет у трипсиногена гекосопептид, в результате чего образуется фермент трипсин. Для реализации этого процесса (для превращения неактивной формы фермента (трипсиногена) в активную (трипсин)) необходима щёлочная среда (рН 6,8-8,0) и присутствие ионов кальция (Са2+). Последующее превращение трипсиногена в трипсин осуществляется в 12 п.к. под действием образовавшегося трипсина. Кроме того, трипсин активизирует другие проферменты поджелудочной железы. Взаимодействие трипсина с проферментами приводит к образованию ферментов (химотрипсина, карбоксипептидаз А и В, эластаз и фосфолипаз и других). Трипсин проявляет своё оптимальное действие в слабощёлочной среде (при pH 7,8-8).

Ферменты трипсин и химотрипсин осуществляют расщепление пищевых белков до олигопептидов. Олигопептиды – промежуточный продукт расщепления белков. Трипсин, химотрипсин, эластаза разрушают внутрипептидные связи белков (пептидов), в результате чего высокомолекулярные (содержащие много аминокислот) белки распадаются на низкомолекулярные (олигопептиды).

Нуклеазы (ДНК-азы, РНК-азы) расщепляют нуклеиновые кислоты (ДНК, РНК) до нуклеотидов. Нуклеотиды под действием щёлочных фосфатаз и нуклеотидаз превращаются в нуклеозиды, которые всасываются из пищеварительной системы в кровь и лимфу.

Панкреатическая липаза расщепляет жиры, в основном триглицериды, до моноглицеридов и жирных кислот. На липиды действуют также фосфолипаза А2 и эстераза.

Поскольку пищевые жиры нерастворимы в воде, липаза действует только на поверхности жира. Чем больше поверхность контакта жира и липазы, тем активнее происходит расщепление жира липазами. Увеличивает поверхность контакта жира и липазы процесс эмульгирования жира. В результате эмульгирования жир разбивается на множество мелких капель размером от 0,2 до 5 мкм. Эмульгирование жиров начинается в ротовой полости в результате измельчения (пережёвывания) пищи и смачивания её слюной, затем продолжается в желудке под влиянием перистальтики желудка (перемешивание пищи в желудке) и окончательное (основное) эмульгирование жиров происходит в тонкой кишке под влиянием жёлч¬ных кислот и их солей. Кроме того, образованные в результате расщепления триглицеридов жирные кислоты взаимодействуют со щёлочами тонкой кишки, что приводит к образованию мыла, которое дополнительно эмульгирует жиры. При недостатке жёлчных кислот и их солей происходит недостаточное эмульгирование жиров, а соответственно и их расщепление и усвоение. Жиры удаляются с калом. При этом кал становится жирным, кашицеобразным белого или серого цвета. Это состояние называется стеатореей. Желчь подавляет рост гнилостной микрофлоры. Поэтому при недостаточном образовании и поступлении в кишечник желчи развивается гнилостная диспепсия. При гнилостной диспепсии возникает диарея=понос (кал темно-коричневого цвета, жидкий или кашицеобразный с резким гнилостным запахом, пенистый (с пузырьками газа). Продукты гниения (диметилмеркаптан, сероводород, индол, скатол и другие) ухудшают общее самочувствие (слабость, потеря аппетита, недомогание, познабливание, головная боль).

На активность липазы прямо пропорционально влияет присутствие ионов кальция (Са2+), жёлчных солей, фермента колипазы. Под действием липаз осуществляется обычно неполный гидролиз триглицеридов; при этом образуется смесь из моноглицеридов (около 50 %), жирных кислот и глицерина (40 %), ди- и триглицеридов (3-10%).

Глицерин и короткие жирные кислоты (содержащие до 10 атомов углерода) самостоятельно всасываются из кишечника в кровь. Жирные кислоты, содержащие более 10 атомов углерода, свободный холестерол, моноацилглицеролы водонерастворимы (гидрофобны) и не могут самостоятельно попасть из кишечника в кровь. Это становится возможным после их соединения с жёлчными кислотами с образованием комплексных соединений, которые называются мицеллы. Размер мицеллы очень мал – в диаметре около 100 нм. Сердцевина мицелл гидрофобна (отталкивает воду), а оболочка гидрофильна. Жёлчные кислоты служат проводником для жирных кислот из полости тонкой кишки в энтероциты (клетки тонкого кишечника). У поверхности энтероцитов мицеллы распадаются. Жирные кислоты, свободный холестерол, моноацилглицеролы поступают внутрь энтероцита. Всасывание жирорастворимых витаминов взаимосвязано с этим процессом. Парасимпатическая вегетативная нервная система, гормоны корко¬вого вещества надпочечников, щитовидной железы, гипофиза, гормоны 12 п.к. секретин и холецистокинин (ХЦК) увеличивают всасывание, симпатическая вегетативная нервная система уменьшает всасывание. Освободившиеся жёлчные кислоты, достигая толстого кишечника, всасываются в кровь, в основном, в подвздошной кишке, и далее поглощаются (изымаются) из крови клетками печени (гепатоцитами). В энтероцитах при участии внутриклеточных ферментов из жирных кислот образуются фосфолипиды, триацилглицеролы (ТАГ, триглицериды (жиры) – соединение глицерола (глицерина) с тремя жирными кислотами), эфиры холестерола (соединение свободного холестерола с жирной кислотой). Далее из этих веществ в энтероцитах образуются комплексные соединения с белком – липопротеиды, в основном, хиломикроны (ХМ) и в меньшем количестве – липопротеиды высокой плотности (ЛПВП). ЛПВП из энтероцитов поступают в кровоток. ХМ имеют большой размер и поэтому не могут попасть непосредственно из энтероцита в кровеносную систему. Из энтероцитов ХМ поступают в лимфу, в лимфатическую систему. Из грудного лимфатического протока ХМ попадают в кровеносную систему.

Панкреатическая амилаза (α-Амилаза), расщепляет полисахариды (углеводы) до олигосахаридов. Олигосахариды – промежуточный продукт расщепления полисахаридов состоящий из нескольких моносахаридов, соединённых между собой межмолекулярными связями. Среди олигосахаридов образованных из пищевых полисахаридов под действием панкреатической амилазы преобладают дисахариды, состоящие из двух моносахаридов и трисахариды, состоящие из трёх моносахаридов. α-Амилаза проявляет своё оптимальное действие в нейтральной среде (при рН 6,7-7,0).

В зависимости от употребляемой еды, поджелудочная железа вырабатывает разное количество ферментов. Например, если есть только жирную пищу, то поджелудочная железа будет вырабатывать преимущественно фермент для переваривания жиров – липазу. В этом случае выработка других ферментов значительно сократится. Если же есть один только хлеб, то вырабатывать поджелудочная железа будет ферменты, расщепляющие углеводы. Злоупотреблять однообразным рационом не следует, так как постоянный дисбаланс в выработке ферментов может привести к заболеваниям.

Эпителиальные клетки тонкой кишки (энтероциты) выделяют в просвет кишки секрет, который называют кишечным соком. Кишечный сок имеет щёлочную реакцию за счёт содержания в нём гидрокарбонатов. рН кишечного сока колеблется от 7,2 до 8,6, содержит ферменты, слизь, другие вещества, а также состарившиеся отторгшиеся энтероциты. В слизистой оболочке тонкой кишки происходит непрерывная смена слоя клеток поверхностного эпителия. Полное обновление этих клеток у человека совершается за 1-6 сут. Такая интенсивность образования и отторжения кле¬ток становится причиной большое их количества в кишечном соке (у человека за сутки отторгается около 250 г энтероцитов).

Слизь синтезированная энтероцитами образует защитный слой, предотвращающий чрезмерное механическое и химическое воздействие химуса на слизистую оболочку кишки.

В кишечном соке более 20 раз¬личных ферментов, принимающих участие в пищеварении. Основная часть этих ферментов принимает участие в при¬стеночном пищеварении, то есть непосредственно у поверхности ворсинок, микроворсинок тонкой кишки – в гликокаликсе. Гликокаликс представляет собой молекулярное сито, которое пропускает к клеткам кишечного эпителия молекулы, в зависимости от их величины, заряда и других параметров. Гликокаликс содержит ферменты из полости кишечника и синтезированные самими энтероцитами. В гликаликсе происходит окончательное расщепление промежуточных продуктов расщепления белков, жиров и углеводов на составляющие компоненты (олигомеров до мономеров). Гликокаликс, микроворсинки и апикальная мембрана в совокупности называются исчерченной каёмкой.

Карбогидразы кишечного сока состоят в основном из дисахаридаз, которые расщепляют дисахариды (углеводы, состоящие из двух молекул моносахаридов) на две молекулы моносахаридов. Сахараза расщепляет молекулу сахарозы на молекулу глюкозы и фруктозы. Мальтаза расщепляет молекулу мальтозы, а трегалаза – трегалозу на две молекулы глюкозы. Лактаза (α-галактазидаза) расщепляет молекулу лактозы на молекулу глюкозы и галактозы. Дефицит синтеза той или иной дисахаридазы клетками слизистой оболочки тонкой кишки становится причиной непереносимости соответствующего дисахарида. Известны генетически закрепленные и приобретенные лактазная, трегалазная, сахаразная и комбинированные дисахаридазные недоста¬точности.

Пептидазы кишечного сока расщепляют пептидную связь между двумя конкретными аминокислотами. Пепти¬дазы кишечного сока завершают гидролиз олигопептидов, в результате чего образуются аминокислоты – конечные продукты расщепления (гидролиза) белков, которые поступают (всасываются) из тонкой кишки в кровь и лимфу.

Нуклеазы (ДНК-азы, РНК-азы) кишечного сока расщепляют ДНК и РНК до нуклеотидов. Нуклеотиды под действием щёлочных фосфатаз и нуклеотидаз кишечного сока превращаются в нуклеозиды, которые всасываются из тонкой кишки в кровь и лимфу.

Основная липаза кишечного сока – кишечная моноглицеридлипаза. Она гидролизует моноглицериды с любой длиной углеводородной цепи, а также короткоцепочечные ди- и триглицериды, в меньшей мере - триглицериды со средней длиной цепи и эфиры холестерина.

Управление секрецией сока поджелудочной железы, кишечного сока, желчи, двигательной активности (перистальтики) тонкой кишки осуществляется нервно-гуморальными (гормональными) механизмами. Управление осуществляется вегетативной нервной системой (ВНС) и гормонами, которые синтезируются клетками гастроэнтеропанкреатической эндокринной системы – части диффузной эндокринной системы.

В соответствии с функциональными особенностями в ВНС выделяют парасимпатическую ВНС и симпатическую ВНС. Оба эти отдела ВНС осуществляют управление.

Нейроны, которые осуществляют управление, приходят в состояние возбуждения под влиянием импульсов, которые поступают к ним от рецепторов полости рта, носа, желудка, тонкой кишки, а также из коры головного мозга (мысли, разговоры о еде, вид пищи и тому подобное). В ответ на поступающие к ним импульсы, возбуждённые нейроны посылают по эфферентным нервным волокнам импульсы к управляемым клеткам. Около клеток аксоны эфферентных нейронов образуют многочисленные разветвления, заканчивающиеся тканевыми синапсами. При возбуждении нейрона из тканевого синапса выделяется медиатор – вещество, с помощью которого возбуждённый нейрон влияет на функцию управляемых им клеток. Медиатор парасимптаческой вегетативной нервной системы ацетилхолин. Медиатор симпатической вегетативной нервной системы норадреналин.

Под действием ацетилхолина (парасимпатической ВНС), происходит увеличение секреции кишечного сока, сока поджелудочной железы, желчи, усиление перистальтики (моторной, двигательной функции) тонкой кишки, жёлчного пузыря. Эфферентные парасимпатические нервные волокна подходят к тонкой кишке, к поджелудочной железе, к клеткам печени, к жёлчевыводящим путям в составе блуждающего нерва. Ацетилхолин оказывает своё действие на клетки через М-холинорецепторы, расположенные на поверхности (мембранах, оболочках) этих клеток.

Под действием норадреналина (симпатической ВНС) уменьшается перистальтика тонкой кишки, уменьшается образования кишечного сока, сока поджелудочной железы, желчи. Норадреналин оказывает своё действие на клетки через β-адренорецепторы, расположенные на поверхности (мембранах, оболочках) этих клеток.

В управлении моторной функции тонкой кишки принимает участие ауэрбахово сплетение – внутриорганный отдел вегетативной нервной системы (интрамуральная нервная система). В основе управления – местные периферические рефлексы. Ауэрбахово сплетение представляет собой густую непрерывную сеть нервных узлов, соединённых между собой нервными тяжами. Нервные узлы представляют собой совокупность нейронов (нервных клеток), а нервные тяжи – отростки этих нейронов. В соответствии с функциональными особенностями Ауэрбахово сплетение состоит из нейронов парасимпатической ВНС и симпатической ВНС. Нервные узлы и нервные тяжи Ауэрбахова сплетение располагаются между продольным и циркулярным слоями гладкомышечных пучков стенки кишки, идут в продольном и циркулярном направлении и образуют вокруг кишки непрерывную нервную сеть. Нервные клетки Ауэрбахова сплетения иннервируют продольные и циркулярные пучки гладкомышечных клеток кишки, регулируя их сокращения.

В управлении секреторной функцией тонкой кишки также принимают участие два нервных сплетения интрамуральной нервной системы (внутриорганной вегетативной нервной системы): субсерозное нервное сплетение (воробьёво сплетение) и подслизистое нервное сплетение (мейснерово сплетение). Управление осуществляется на основе местных периферических рефлексов. Эти оба сплетения, как и ауэрбахово сплетение представляет собой густую непрерывную сеть нервных узлов, соединённых между собой нервными тяжами, состоит из нейронов парасимпатической ВНС и симпатической ВНС.

Нейроны всех трёх сплетений имеют между собой синаптические связи.

Двигательная активность тонкой кишки управляется двумя автономными источниками ритма. Первый расположен у места впадения общего жёлчного протока в двенадцатиперстную кишку, а другой – в подвздошной кишке.

Двигательная активность тонкой кишки управляется рефлексами, которые возбуждают и тормозят моторику кишки. К рефлексам, которые возбуждают моторику тонкой кишки, относятся: пищеводно-кишечный, желудочно-кишечный и кишечно-кишечный рефлексы. К рефлексам, которые тормозят моторику тонкой кишки, относятся: кишечно-кишечный, ректоэнтеральный, рефлекс рецепторной релаксация (торможения) тонкой кишки во время еды.

Двигательная активность тонкой кишки зависит от физических и химических свойств химуса. Большое содержание клетчатки, солей, промежуточных продуктов гидролиза (особенно жиров) в химусе усиливают перистальтику тонкой кишки.

S-клетки слизистой оболочки 12 п.к. синтезируют и выделяют в просвет кишки просекретин (прогормон). Просекретин в основном под действием соляной кислоты желудочного химуса превращается в секретин (гормон). Наиболее интенсивно превращение просекретина в секретин происходит при рН=4 и меньше. При увеличении рН скорость превращения уменьшается прямо пропорционально. Секретин всасывается в кровь и с током крови достигает клеток поджелудочной железы. Под действием секретина клетки поджелудочной железы увеличивают секрецию воды и гидрокарбонатов. Секретин не увеличивает секрецию поджелудочной железой ферментов и проферментов. Под действием секретина увеличивается секреция щёлочного компонента сока поджелудочной железы, который поступает в 12 п.к. Чем больше кислотность желудочного сока (чем меньше рН желудочного сока), тем больше образуется секретина, тем больше выделяется в 12 п.к. сока поджелудочной железы с большим количеством воды и гидрокарбонатов. Гидрокарбонаты нейтрализуют соляную кислоту, рН увеличивается, образование секретина уменьшается, секреция сока поджелудочной железы с высоким содержанием гидрокарбонатов уменьшается. Кроме того, под действием секретина увеличивается жёлчеобразование, секреции желез тонкой кишки.

Превращение просекретина в секретин происходит также под действием этилового спирта, жирных, жёлчных кислот, компонентов специй.

Наибольшее количество S-клеток расположено в 12 п.к. и в верхней (проксимальной) части тощей кишки. Наименьшее количество S-клеток расположено в наиболее удалённой (нижней, дистальной) части тощей кишки.

Секретин представляет собой пептид, состоящий из 27 аминокислотных остатков. Сходную к секретину химическую структуру, а соответственно, возможно похожее действие, имеют вазоактивный интестинальный пептид (ВИП), глюкагоноподобный пептид-1, глюкагон, глюкозозависимый инсулинотропный полипептид (ГИП), кальцитонин, кальцитонин ген связанный пептид, парат-гормон, рилизинг фактор гормона роста, кортикотропин рилизинг фактор и другие.

При поступлении химуса из желудка в тонкую кишку I-клетки расположенные в слизистой оболочке 12 п.к. и верхней (проксимальной) части тощей кишки начинают синтезировать и выделять в кровь гормон холецистокинин (ХЦК, ССК, панкреозимин). Под действием ХЦК происходит расслабление сфинктера Одди, сокращение жёлчного пузыря и как следствие увеличивается поступление желчи в 12.п.к. ХЦК вызывает сокращение пилорического сфинктера и ограничивает поступление желудочного химуса в 12 п.к., усиливает моторику тонкой кишки. Наиболее сильным стимулятором синтеза и выделения ХЦК являются пищевые жиры, белки, алкалоиды жёлчегонных трав. Пищевые углеводы не оказывают стимулирующего влияния на синтез и выделение ХЦК. К стимуляторам синтеза и выделения ХЦК относится также гастрин-рилизинг пептид.

Синтез и выделение ХЦК уменьшается под действием соматостатина – пептидного гормона. Соматостатин синтезируется и выделяется в кровь D-клетками, которые располагаются в желудке, кишечнике, среди эндокринных клеток поджелудочной железы (в островках Лангерганса). Соматостатин синтезирунтся также клетками гипоталамуса. Под действием соматостатина уменьшается не только синтез ХЦК. Под действием соматостатина уменьшается синтез и выделение других гормонов: гастрина, инсулина, глюкагона, вазоактивного интестинального полипептида, инсулиноподобного фактора роста-1, соматотропин-рилизинг-гормона, тиреотропных гормонов и других.

Уменьшает желудочную, жёлчную и панкреатическую секрецию, перистальтику желудочно-кишечного тракта Пептида YY. Пептида YY синтезируется L-клетками, которые размещены в слизистой оболочке толстой кишке и в конечной части тонкой кишки – в подвздошной кишке. Когда химус достигает подвздошной кишки жиры, углеводы и желчные кислоты химуса действуют на рецепторы L-клеток. L-клетки начинают синтезировать и выделять в кровь пептид YY. В результате перистальтика желудочно-кишечного тракта замедляется, желудочная, жёлчная и панкреатическая секреция уменьшается. Явление замедления перистальтики желудочно-кишечного тракта после достижения химусом подвздошной кишки получило название подвздошного тормоза. Стимулятором секреции пептида YY является также гастрин-рилизинг пептид.

D1(H)-клетки, которые размещены, в основном, в островках Лангерганса поджелудочной железы и, в меньшем количестве, в желудке, в толстой и в тонкой кишке синтезируют и выделяют в кровь вазоактивный интестинальный пептид (ВИП). ВИП оказывает выраженное расслабляющее действие на гладкомышечные клетки желудка, тонкой, толстой кишки, жёлчного пузыря, а также сосудов желудочно-кишечного тракта. Под действием ВИП увеличивается кровоснабжение желудочно-кишечного тракта. Под действием ВИП увеличивается секреция пепсиногена, кишечных ферментов, панкреатических ферментов, содержание гидрокарбонатов в соке поджелудочной железы, уменьшается секреция соляной кислоты.

Секреция поджелудочной железы увеличивается под действием гастрина, серотонина, инсулина. Стимулируют также выделение сока поджелудочной железы соли жёлчных кис¬лот. Уменьшают секрецию поджелудочной железы глюкагон, соматостатин, вазопрессин, адренокортикотропный гормон (АКТГ), кальцитонин.

К эндокринным регуляторам двигательной (моторной) функции желудочно-кишечного тракта относится гормон Мотилин. Мотилин синтезируют и выделяют в кровь энтерохромаффинные клетки слизистой оболочки 12 п.к. и тощей кишки. Стимулятором синтеза и выделения в кровь мотилина являются жёлчные кислоты. Мотилин в 5 раз сильнее стимулирует перистальтику желудка, тонкой и толстой кишки, чем медиатор парасимпатической ВНС ацетилхолин. Мотилин вместе с холицистокинином, управляет сократительной функцией жёлчного пузыря.

К эндокринным регуляторам двигательной (моторной) и секреторной функции кишечника относится гормон Серотонин, который синтезируется клетками кишечника. Под действием этого серотонина усиливается перистальтика и секреторная активность кишечника. Кроме того, кишечный серотонин является фактором роста для некоторых видов симбионтной микрофлоры кишечника. При этом симбионтная микрофлора принимает участие в синтезе кишечного серотонина декарбоксилируя триптофан, который является источником, сырьём для синтеза серотонина. При дисбактериозе и некоторых других заболеваниях кишечника синтез кишечного серотонина уменьшается.

Из тонкой кишки химус порциями (около 15 мл) поступает в толстую кишку. Регулирует это поступление илеоцекальный сфинктер (баугиниева заслонка). Раскрытие сфинктера происходит рефлекторно: перистальтика подвздошной кишки (конечной части тонкой кишки) повышает давление на сфинктер со стороны тонкой кишки, сфинктер расслабляется (открывается), химус поступает в слепую кишку (начальный отдел толстой кишки). При наполнении слепой кишки и её растяжении сфинктер закрывается, и химус обратно в тонкую кишку не возвращается.

Ваши комментарии по теме Вы можете разместить ниже.

zhivizdravo.ru

Альфа Создание

Хорошее пищеварение является решающим для хорошего здоровья. Для человеческого тела необходимо эффективное пищеварение и надлежащее выведение, чтобы поддерживать здоровье и уровень энергии. Пока что, еще не существует более распространенного физиологического нарушения у людей чем нарушение пищеварения, которое имеет много различных форм. Рассмотрим это: Антациды (средство нейтрализующее кислоту) (для борьбы с одной из форм нарушения пищеварения) продаваемое в розницу средство номер один в США. Когда мы терпим или игнорируем эти условия, или маскируем их с помощью аптечной химии, мы пропускаем важные сигналы, которые шлет нам наше тело. Мы должны слушать. Дискомфорт должен служить как система раннего предупреждения. Нарушение пищеварения лежит в основе большинства болезней и их симптомов, потому что расстройство пищеварения поддерживает чрезмерный рост микроформ производящих токсины (Это еще один порочный круг: Чрезмерный рост дрожжей, грибов и плесени также содействуют расстройству пищеварению). Слабое пищеварение способствует кислотному кровотоку. Более того, мы не можем должным образом питать свой организм, если мы как следует не перевариваем образом пищу. Без должного питания мы не можем полностью и постоянно быть здоровыми. Наконец, рецидивирующее или хроническое нарушение пищеварения само по себе может быть смертельным. Постепенное препятствование кишечному функционированию может происходить не замеченным, пока не появятся такие серьезные состояния как: болезнь Крона, синдром раздраженной толстой кишки(слизистый колит) и даже рак толстой кишки.

1, 2, 3

Пищеварение фактически имеет три ключевых части, и все из них должны быть в хорошем состоянии, чтобы поддерживать хорошее здоровье. Но проблемы являются общими в каждом из трех этапов. Первая – нарушение пищеварения, которое начинается с полости рта и продолжается в желудке и тонкой кишке. Вторая – в тонком кишечнике пониженное всасывание. Третья – запор нижнего кишечника, который появляется как диарея, редкие испражнения, фекальные закрепления, вздутия или зловонные газы.

Вот вам экскурсия в ваш пищеварительный тракт, которая поможет вам понять как эти типы соединяются и перекрываются. Пищеварение фактически начинается уже тогда, когда вы пережевываете пищю. В дополнение к работе зубов, слюна также начинает разрушать еду. Как только пища достигает желудка, желудочная кислота (сверх мощное вещество) продолжает расщепление еды на компоненты. От туда переваренная пища перемещается в тонкую кишку для длительного путешествия (тонкая кишка у человека может достигать 5-6 метров), во время которого питательные вещества всасываются для использования в теле. Следующая и окончательная остановка это толстая кишка, где всасываются вода и некоторые минералы. Потом все, что ваше тело не поглотило, вы выделяете как отходы.

Это изящная и эффективная система, если она работает правильно. Она также способна к быстрому восстановлению. Но мы по привычке перенапрягаем нашу пищеварительную систему пищей низкого качества, лишенной питательных веществ (также необходимо упомянуть стресс в котором мы живем) до такого уровня что у большинства американцев оно просто не происходит как надо. И это еще без таких факторов как чрезмерная кислотность и рост микроформ!

«Дружественная» бактерия

Это была обычная анатомия. Другой важнейший компонент человеческой пищеварительной системы, который вам необходимо понять это бактерии и другие микроформы, имеющиеся в больших количествах в определенных местах обитания. Пока у нас правильный образ жизни и привычки, эти дружественные бактерии, известные как пробиотики, существуют внутри нас чтобы помогать нам быть здоровыми. Они незаменимо-важные не только для здоровья, но и для жизни в целом.

Пробиотики поддерживают целостность кишечной стенки и внутренней среды. Они подготавливают пищу для всасывания и поглощения питательных веществ. Они помогают поддерживать правильное время прохождения переваренной пищи, предоставляя максимальное всасывание и быстрое выведение. Пробиотики выделяют много различных полезных веществ, включая натуральные антисептики молочную кислоту и ацидофилин, которые помогают в пищеварении. Они также производят витамины. Пробиотики могут производить почти все витамины группы В, включая ниацин (никотиновая кислота, витамин РР), биотин (витамин Н), В6, В12 и фолиевою кислоту, а также могут переделать один витамин В в другой. Они даже способны производить витамин К, в некоторых обстоятельствах. Они защищают вас от микроорганизмов. Имея необходимые культуры в вашей тонкой кишке, даже заражение сальмонеллой не навредит вам, и получить так называемую «дрожжевую инфекцию» будет просто не возможно. Пробиотики нейтрализуют токсины, не давая им всосаться в ваше тело. У них имеется еще одна ключевая роль: контроль не дружественных бактерий и других вредных микроформ, препятствуя их чрезмерному росту.

В здоровой, сбалансированной пищеварительной системе человека можно найти от 1,3 кг до 1,8 кг пробиотиков. К сожалению, я оцениваю, что большинство людей имеют менее 25% от их нормального количества. Питание животными продуктами и обработанными продуктами, проглатывание химикатов, включая лекарства отпускаемые по рецепту и без него, переедание и чрезмерный стресс всех типов, разрушают и ослабляют колонии пробиотиков и подрывают пищеварение. Это в свою очередь вызывает чрезмерный рост вредных микроформ и проблемы, которые с ними приходят.

Кислотность в желудке и толстой кишке варьируется в зависимости от еды, которой вы питаетесь. Высокое содержание воды, продукты с малым содержанием сахара, как рекомендовано в этой программе, вызывают меньше кислоты. Как только еда попадает в тонкую кишку, если необходимо поджелудочная железа добавляет щелочные вещества (8.0 - 8.3) в смесь, чтобы повысить уровень pH. Таким образом у тела есть возможность сдерживать кислоты или щелочи на необходимом уровне. Но наше современное, высоко-кислотное питание перенагружает эти системы. Правильное питание не позволяет организму получать стресс и позволяет процессу проходить естественно и легко.

Новорожденные младенцы сразу имеют несколько разных видов кишечных микроформ. Никто не знает, как они к ним попадают, однако некоторые полагают что через родовые пути. Хотя, дети рожденные через кесарево сечение также их имеют. Я полагаю что микроформы ни откуда не попадают и скорее всего это специфические клетки нашего тела, которые на самом деле эволюционировали из наших микрозимов. Чтобы появились симптомы болезни для этого не нужно «заражение» вредными микроформами, аналогичное можно сказать и про полезные микроформы.

Тонкий кишечник

7-8 метров тонкого кишечника требует немного больше внимания чем я предоставил в предыдущем поверхностном обзоре. Также вам необходимо знать что ее внутренние стенки покрыты маленькими выступами, которые называются ворсинки. Они служат для увеличения максимальной площади контакта с проходящей пищей, для того чтобы из нее можно было поглотить как можно больше всего полезного. Площадь вашего тонкого кишечника составляет около 200 квадратных метров - что почти равняется площади теннисного корта!

Дрожжи, грибы и другие микроформы препятствуют поглощению питательных веществ. Они могут покрывать большие площади внутреннего покрытия мембраны в тонкой кишке, вытесняя пробиотики и мешая вашему организму получать полезные вещества из еды. Это может вас привести к голоду по витаминам, минералам и особенно протеину, независимо от того, что вы кладете в рот. Я считаю, что больше половины взрослых в США переваривают и поглощают менее половины от того что они едят.

Чрезмерный рост микроформ, питающиеся питательными веществами, которые полагались нам (и выделяя их ядовитые отходы из них), делают ситуацию еще хуже. Без должного питания, организм не может лечить и регенерировать свои ткани как требуется. Если вы не можете переварить или усвоить пищу, ткани начнут в конечном счете голодать. Это не только опустошает ваш уровень энергии и заставляет вас чувствовать себя больным, но также и ускоряет процесс старения.

Но это всего лишь часть проблемы. Принимайте во внимание также и то, что когда ворсинки хватают еду, они трансформируют ее в красные кровяные тельца. Эти красные кровяные тельца циркулируют по всему телу и трансформируют себя в клетки тела разных типов, включая сердца, печени и клетки мозга. Я думаю вы не будете удивлены узнав что уровень pH тонкой кишки должен быть щелочным для того чтобы трансформировать пищу в красные кровяные тельца. Поэтому качество пищи, которую мы едим определяет качество красных кровяных телец, которые в свою очередь определяют качество костей, мышц, органов и так далее. Вы буквально есть то, что едите.

Если кишечная стенка покрыта большим количеством липкой слизи, то эти жизненно-важные клетки не могут быть сформированы надлежащим образом. А те которые и были созданы имеют недостаточный вес. Тогда тело должно прибегнуть к созданию красных кровяных телец из своих собственных тканей, воруя из костей, мышц и других мест. Почему клетки тела трансформируются обратно в красные кровяные тельца? Количество красных кровяных телец должно оставаться выше определенного уровня, чтобы тело могло функционировать и мы могли жить. Обычно у нас имеется около 5 миллионов на кубический миллиметр и численность редко достигает менее чем 3 миллиона. Ниже этого уровня, снабжение кислородом (который красные кровяные тельца доставляют) не будет достаточным для поддержки органов, и в конечном итоге они прекратят свою работу. Чтобы не допустить этого, клетки тела начинают обращаться назад в красные кровяные тельца.

Толстый кишечник

Толстый кишечник это канализационная станция нашего тела. Он выводит непригодные для нас отходы и действует как губка, выдавливая воду и минеральное содержание в кровоток. В добавок к пробиотикам, в кишечнике содержатся некоторые полезные дрожжи и грибки, которые помогают смягчить стул для быстрого и тщательного вывода отходов.

К тому времени когда переваренная пища достигает толстого кишечника, большинство жидких материалов будут из нее уже извлечено. Это то как должно быть, но это предоставляет потенциальную проблему: Если окончательная фаза пищеварения проходит неправильно, то толстый кишечник может быть залеплен старыми (токсическими) отходами.

Толстый кишечник очень чувствительный. Любая травма, операция или другой стресс, включая эмоциональный упадок и негативный образ мышления, может изменить его дружественные бактерии-резиденты и общую способность функционировать гладко и эффективно. Незавершенное пищеварение приводит к кишечному дисбалансу по всему пищеварительному тракту, а также к тому, что толстый кишечник становиться буквально выгребной ямой.

Пищеварительная сложность по всему кишечнику часто препятствует нужному расщеплению протеинов. Частично переваренные протеины, не пригодные для тела, могут все еще быть поглощены в кровь. В такой форме, они служат не для чего иного кроме как для питания микроформ, увеличивая производство их отбросов. Эти фрагменты протеинов также стимулируют отклик иммунной системы.

История Джои

Ни у кого нет времени болеть, особенно когда другие на тебя рассчитывают. Я мать-одиночка, также забочусь о недавно ставшим инвалидом отце, и мне нужна вся сила, чтобы поддерживать жизнь в доме. Но я была больна более чем два десятилетия. Я решила, что лучше оставаться дома и просто убрать себя из человеческой расы.

Однажды в библиотеке, пытаясь взять себя в руки после одной из мучительно болевых атак, я наткнулась на книгу с главой про синдром раздраженной толстой кишки (слизистый колит) (мой диагноз на протяжении многих лет). Упоминания в ней про алоэ вера и ацидофилин немедленно отправили меня в ближайший магазин здоровой еды, где я начала задавать вопросы.

Продавщица была довольно полезной. Она спросила почему я искала эти продукты и я рассказала ей о моем синдроме раздраженной толстой кишки, дисфункции щитовидной железы и надпочечников, грыже пищеводного отверстия, эндометриозе, почечных инфекциях и многих других инфекциях. Антибиотики были моим путем для жизни. В итоге мои доктора просто сказали мне учиться жить с ними, но продавщица рассказала мне что она знает людей с похожими на мою историями и которые изменили свое состояние на противоположное. Она представила меня одной женщине чья история была похожа на мою. И она рассказала мне про то, как программа Янга изменила ее жизнь.

Я знала без всякого сомнения что мне нужно делать. Я немедленно изменила свое питание и начала соблюдать режим против грибков и замены их полезной флорой. В течение двух месяцев я перестала быть заложником боли. Я чувствовала себя намного лучше. Огромный груз был скинут с моих плечей. Моя жизнь начала только улучшаться.

Более подробно про слизь – больше чем вы когда либо знали и хотели бы узнать

Несмотря на то что у нас есть тенденция ассоциировать это с насморком или еще чем хуже, но на самом деле слизь это нормальная секреция. Это чистое, липкое вещество, которое производит тело чтобы защитить поверхности мембран. Одним из таких способов является покрытие всего что вы проглатываете, даже воды. Поэтому она также поглощает любые токсины, которые к вам попадают и делая это она становится густой, липкой и непрозрачной (как мы можем наблюдать когда болеем простудой), чтобы захватить токсины и вывести их из тела.

Большинство пищи, которую употребляют американцы, вызывает эту густую слизь. Она либо содержит токсины либо разрушается токсическим образом в пищеварительной системе (или то и другое). Наибольшие преступники это молочные продукты, за которыми идут животный протеин, белая мука, обработанные пищевые продукты, шоколад, кофе и алкогольные напитки (Овощи не вызывают появления этой липкой слизи). Со временем, эта пища может покрыть кишечник густой слизью, что является ловушкой для фекалий и других отходов. Эта слизь сама по себе достаточно вредна так как создает благоприятную среду для роста вредных микроформ.

Эмоциональный стресс, загрязнение окружающей среды, недостаток физических упражнений, нехватка пищеварительных энзимов и отсутствие пробиотиков в тонком и толстом кишечниках, все содействует накоплению слизи на стенке толстого кишечника. С накоплением слизи, время транзита материалов через нижний кишечник увеличивается. Низкий уровень волокна в вашем питании уменьшает его еще больше. Как только клейкая масса начинает прилипать к стенке толстой кишки, формируется карман между этой массой и стенкой, который является идеальным домом для микроформ. Материал постепенно добавляет себя в слизь, пока большая часть его совершенно не перестанет двигаться. Толстый кишечник впитывает жидкость которая осталась, накопленная масса начинает затвердевать и дом вредных организмов становится крепостью.

Изжога, газ, вздутие, язвы, тошнота и гастрит (раздражение стенок кишечника от газа и кислоты), все это результат чрезмерного роста микроорганизмов в желудочно-кишечном тракте.

Тоже самое касается и запора, который в является не только не приятным симптомом, но также вызывает еще больше проблем и симптомов. Запор часто обнаруживается как или сопровождается такими симптомами: обложенный язык, диарея, колики, газ, неприятный запах, кишечная боль, и различные формы воспаления, такие как колит и дивертикулит (Мы все слышали такое суждение, что свое «добро» не воняет. Но истина в том, что так не должно быть. Если вы чувствуете вонь, то это означает что природа предупреждает вас).

Но еще хуже то, что микроформы могут фактически проникнуть через стенку толстого кишечника в кровоток. Это означает не только то, что микроформы имеют доступ ко всему телу, но также и то, что они приносят с собой свои токсины и кишечное вещество в кровь. От туда они могут быстро путешествовать и закрепиться где угодно в теле, довольно быстро захватывая клетки, ткани и органы. Все это серьезно бьет по иммунной системе и печени. Непроверенные микроформы проникают глубже в ткани и органы, центральную нервную систему, структуру скелета, лимфатическую систему и костный мозг.

Дело не просто в чистоте путей. Такой тип закупорки может воздействовать на все части тела, потому что препятствует автоматическим рефлексам и отсылает не соответствующие сигналы. Рефлекс это нервный путь в котором импульс идет от точки стимуляции до точки отклика, не проходя через мозг (это когда доктор ударяет вам по коленке маленьким резиновым молоточком и ваша нижняя часть ноги сама делает движение). Рефлексы могут также отвечать и в таких местах, которые не стимулируются. Ваше тело это большое количество рефлексов. Некоторые ключевые находятся в нижнем кишечнике. Они связанны с каждой системой организма с помощью нервных путей. Сжатые вещества как целый эскадрон маленьких резиновых молотков ударяют везде, отсылая разрушительные импульсы в другие части тела (этот пример, главная причина головных болей). Это само по себе может нарушить и ослабить любую или все системы тела. Тело создает слизь как естественную защиту против кислоты, чтобы связать ее и вывести из тела. Так что слизь это не плохая вещь. По сути она спасает нам жизнь! Например, когда вы едите молочные продукты, молочный сахар взбраживается в молочную кислоту, которую потом связывает слизь. Если бы не слизь, кислота могла бы прожечь дыру в ваших клетках, тканях или органах (если бы не молочные продукты, то не было бы надобности в слизи). Если питание продолжается быть чрезмерно кислотным, создается слишком много слизи и смесь из слизи и кислоты становится липкой и застойной, приводя к слабому пищеварения, холодным рукам, холодным ногам, легкомысленности, заложенности носа, застоям в легких (как астма), и постоянной очистке горла.

Восстанавливая здоровье

Мы должны заново наполнить наш пищеварительный тракт пробиотиками, которые в нем и обитают. С помощью надлежащего питания, их нормальная популяция восстановится. Вы можете помочь в этом процессе добавками с пробиотиками.

Эти добавки были так сильно расхвалены в некоторых местах, что вы могли бы подумать что они панацея которая все излечит. Но они не будут работать сами по себе. Вы не можете просто взять и забросить культуры в кишечник не сделав необходимых изменений в питании для поддержки pH баланса, иначе они просто пройдут транзитом. Или они могли бы остаться у вас. Вы должны подготовить среду насколько это возможно (об этом позже в книге) прежде чем начнете принимать добавки с пробиотиками.

Когда вы выбираете добавку, учитывайте что в тонком и толстом кишечнике содержатся разные доминирующие бактерии, так как каждый орган служит для своей цели и имеет другую среду (кислотную или щелочную) - например, для хорошей бактерии лактобациллы (молочнокислая бактерия) необходима щелочная среда в тонком кишечнике, а бифидобактерии процветают в умеренно кислой среде в толстом кишечнике.

Ни одна бактерия, попавшая в кишечник, не будет эффективной пока вы не сделаете необходимые изменения. Даже если вы их не сделаете, бактерии могут все равно улучшить среду на своем пути, помогая росту хороших бактерий, которые там уже живут. Они должны остаться живыми после пищеварительного процесса, поэтому лучшие продукты спроецированы с этой целью. Если бы вы приняли бифидобактерию через рот, то ей бы пришлось пройти особенно долгий путь через тонкий кишечник в толстый. Но бифидобактерии не могут выжить в щелочной среде тонкого кишечника и поэтому должны приняты через прямую кишку с помощью клизмы. Более того вы должны принимать лактобактерии и бифидобактерии отдельно, так как они могут погасить одна другую если принимаются вместе (если только бифидобактерии не принимаются через прямую кишку).

Другой способ это пребиотики (специальная еда которой питаются пробиотики), которые способствуют развитию имеющихся у вас в организме «дружественных» бактерий. Семейство углеводов называемое фруктоолигосахарид (ФОС), питает, в особенности, бифидобактерии, а также лактобактерии. Их можно принимать как добавку самостоятельно или в составе формулы. Вы также можете получать их напрямую из самого источника: спаржа, топинамбур (земляная груша, иерусалимский артишок), свекла, репчатый лук, чеснок, цикорий.

В любом случае, каждая индивидуальная ситуация по своему отличается. Если у вас есть сомнения, что вы действуете не правильно или что это работает не так как должно, то проконсультируйтесь с опытным медицинским работником.

Помимо улучшения вашего общего здоровья и потери веса, следуя этой программе вы очистите свой кишечник и восстановите пробиотики, а также приведете в норму уровень pH. Как вы можете теперь видеть, все между собой переплетено. Как только уровень pH крови и тканей нормализуется, а кишечник очистится - также нормализуются усвоение питательных веществ и вывод отходов и вы окажитесь на пути к полному и блестящему здоровью.

История Кейт

Я находилась на диете с малым содержанием жиров и сахара, и не смотря на то что я хотела скинуть вес, я просто не могла сократить количество еды которую ела. Каждый раз когда я это делала, меня атаковала усталость. Убрав из питания продукты рекомендованные в этой программе (мне нужно было избавиться от мяса, кроме умеренного количества рыбы, дрожжевых продукты, молочных продуктов, продуктов из очищенной белой муки и большинства фруктов) и продолжая есть приблизительно такое же количество калорий и никогда не чувствуя себя голодной, я потеряла 16 кг, которые не могла скинуть находясь на традиционной диете и занимаясь физическими упражнениями.

Мой муж – доктор и когда он увидел мои результаты, то начал изучать эту программу, а потом тоже изменил свое питание.

www.alpha-being.com

Особенности пищеварения в тонком и толстом кишечнике.

Подробности

В тонкой кишке происходит перемешивание кислого химуса со щелочными секретами поджелудочной железы, кишечных желез и печени, деполимеризация питательных веществ до конечных продуктов (мономеров), способных поступать в кровоток, продвижение химуса в дистальном направлении, экскреция метаболитов и др.

Пищеварение в тонком кишечнике.

Полостное и пристеночное пищеварение осуществляется ферментами секретов поджелудочной железы и кишечного сока с участием желчи. Образующийся панкреатический сок поступает через систему выводных протоков в двенадцатиперстную кишку. Состав и свойства панкреатического сока зависят от количества и качества пищи.

У человека в сутки вырабатывается 1,5-2,5 л панкреатического сока, изотоничного плазме крови, щелочной реакции (рН 7,5-8.8). Такая реакция обусловлена содержанием ионов бикарбоната, которые обеспечивают нейтрализацию кислого желудочного содержимого и создают в двенадцатиперстной кишке щелочную среду, оптимальную для действия панкреатических ферментов.

Панкреатический сок содержит ферменты для гидролиза всех видов питательных веществ: белков, жиров и углеводов. Протеолитические ферменты поступают в двенадцатиперстную кишку в виде неактивных проферментов - трипсиногенов, химотрипсиногенов, прокарбооксипептидаз А и В, эластазы и др., которые активируются энтерокиназой (энзимом энтероцитов бруннеровеких желез).

В соке поджелудочной железы содержатся липолитические ферменты, которые выделяются в неактивном (профосфолипаза А) и активном (липаза) состоянии.

Панкреатическая липаза гидролизует нейтральные жиры до жирных кислот и моноглицеридов, фосфолипаза А расщепляет фосфолипиды до жирных кислот и ионов кальция.

Панкреатическая альфа-амилаза расщепляет крахмал и гликоген, в основном до лисахаропдов и - частично - моносахаридов. Дисахариды далее, под влиянием мальтазы и лактазы, превращаются в моносахариды (глюкозу, фруктозу, галактозу).

Гидролиз рибонуклеиновой кислоты происходит под влиянием панкреатической рибонуклеазы, а гидролиз дезоксирибонуклеиновой кислоты - под влиянием дезокенрибонуклеазы.

Секреторные клетки поджелудочной железы вне периода пищеварения находятся в состоянии покоя и отделяют сок лишь в связи с периодической деятельностью ЖКТ. В ответ на потребление белковой и углеводной пиши (мясо, хлеб) наблюдается резкое увеличение секреции в первые два часа, с максимумом отделения сока на втором часе после приема пищи. В этом случае продолжительность секреции может быть от 4-5 ч (мясо) до 9-10 ч (хлеб). При приеме жирной пищи максимальный подъем секреции имеет место на третьем часе, продолжительность секреции на этот стимул равна 5 ч.

Таким образом, количество и состав секрета поджелудочной железы зависят от количества и качества пиши, контролируются рецептивными клетками кишечника, и в первую очередь двенадцатиперстной кишки. Функциональная взаимосвязь поджелудочной железы, двенадцатиперстной кишки и печени с желчными ходами основывается на общности их иннервации и гормональной регуляции.

Секреция поджелудочной железы происходит пол воздействием нервных влияний и гуморальных раздражителей, возникающих при поступлении пищи в пищеварительный тракт, а также при виде, запахе пиши и при действии привычной обстановки ее приема. Процесс отделения поджелудочного сока условно разделяется на мозговую, желудочную и кишечную сложнорефлекторную фазу. Поступление пищи в полость рта и глотки вызывает рефлекторное возбуждение пищеварительных желез, в том числе секрецию поджелудочной железы.

Секрецию поджелудочной железы стимулируют поступающие в двенадцатиперстную кишку HCI и продукты переваривания пиши. Стимуляция ее продолжается при поступлении желчи. Однако поджелудочную железу в этой фазе секреции преимущественно стимулируют кишечные гормоны секретин и холецистокинин. Под влиянием секретина вырабатывается большое количество сока поджелудочной железы, богатого бикарбонатами и бедного ферментами, холецистокинин стимулирует секрецию панкреатического сока, богатого ферментами. Богатый ферментами панкреатический сок секретируется лишь при совместном действии па железу секретина и холецистокинина. потенцированных ацетилхолином.

Роль желчи в пищеварении.

Желчь в двенадцатиперстной кишке создает благоприятные условия для активности ферментов поджелудочной железы, особенно липаз. Желчные кислоты эмульгируют жиры, снижая поверхностное натяжение капель жира, что создает условия для образования тонкодисперсных частиц, способных всасываться без предварительного гидролиза, способствуют увеличению контакта жиров с липолитическими ферментами. Желчь обеспечивает всасывание в тонкой кишке нерастворимых в воде высших жирных кислот, холестерина, жирорастворимых витаминов (D, Е, К, А) и солей кальция, усиливает гидролиз и всасывание белков и углеводов, способствует ресинтезу триглицеридов в энтероцитах.

Желчь оказывает стимулирующее влияние на деятельность кишечных ворсинок, в результате чего повышается скорость абсорбции веществ в кишке, участвует в пристеночном пищеварении, создавая благоприятные условия для фиксации ферментов на кишечной поверхности. Желчь является одним из стимуляторов секреции поджелудочной железы, сока тонкой кишки, желудочной слизи, наряду с ферментами участвуете процессах кишечного пищеварения, предупреждает развитие гнилостных процессов, оказывает бактериостатическое действие на кишечную флору. Суточная секреция желчи у человека составляет 0,7-1,0 л. Составными ее частями являются желчные кислоты, билирубин, холестерин, неорганические соли, жирные кислоты и нейтральные жиры, лецитин.

Роль секрета желез тонкой кишки в пищеварении.

В сутки у человека выделяется до 2,5 л кишечного сока, являющегося продуктом деятельности клеток всей слизистой оболочки тонкой кишки, бруннеровских и либеркюновых желез. Отделение кишечного сока связано с гибелью железистых меток. Непрерывное отторжение погибших клеток сопровождается их интенсивным новообразованием. В кишечном соке содержатся ферменты, участвующие в пищеварении. Они гидролизируют пептиды и пептоны до аминокислот, жиры - до глицерина и жирных кислот, углеводы - до моносахаридов. Важным ферментом в кишечном соке является энтерокиназа, активирующая панкреатический трипсиноген.

Пищеварение в тонкой кишке является трехзвеньевой системой ассимиляции пищи: полостное пищеварение - мембранное пищеварение - всасывание.Полостное пищеварение в тонкой кишке осуществляется за счет пищеварительных секретов и их энзимов, которые поступают в полость тонкой кишки (панкреатический секрет, желчь, кишечный сок) и действуют на пищевое вещество, прошедшее ферментную обработку в желудке.

Ферменты, участвующие в мембранном пищеварении, имеют различное происхождение. Часть их абсорбируется из полости тонкой кишки (ферменты панкреатического и кишечного сока), другие, фиксированные на цитоплазматических мембранах микроворсинок, являются секретом энтероцитов и работают более длительно, чем те, которые поступили из полости кишечника. Основным химическим стимулятором секреторных клеток желез слизистой оболочки тонкой кишки являются продукты переваривания белка желудочным и поджелудочным соками, а также жирные кислоты, дисахариды. Действие каждого химического раздражителя вызывает выделение кишечного сока с определенным набором ферментов. Так, например, жирные кислоты стимулируют образование кишечными железами липазы, диета со сниженным содержанием белка приводит к резкому снижению активности энтерокиназы в кишечном соке. Однако не все кишечные ферменты участвуют в процессах специфического ферментного приспособления. Образование липазы в слизистой оболочке кишечника не меняется ни при повышенном, ни при пониженном содержании жира в пище. Выработка пептидаз также не претерпевает существенных изменений, даже при резком недостатке белка в рационе питания.

Особенности пищеварения в тонкой кишке.

Функциональной единицей является крипта и ворсинка. Ворсинка – это вырост слизистой оболочки кишки, крипта – наоборот, углубление.

КИШЕЧНЫЙ СОК слабо-щелочной (рН=7.5-8), состоит из двух частей:

(а) жидкая часть сока (вода, соли, без ферментов) секретируется клетками крипт;

(б) плотная часть сока («слизистые комочки») состоит из клеток эпителия, которые непрерывно слущиваются с вершины ворсинок.(Вся слизистая оболочка тонкой кишки полностью обновляется за 3-5 дней).

В плотной части находится более 20 ферментов. Часть ферментов адсорбирована на поверхности гликокаликса (кишечные, панкреатические ферменты), другая часть ферментов входит в состав клеточной мембраны микроворсинок.. (Микроворсинка – это вырост клеточной мембраны энтероцитов. Микроворсинки формируют «щеточную каемку», что значительно увеличивает площадь, на которой происходит гидролиз и всасывание). Ферменты высоко специализированы, необходимы для заключительных стадий гидролиза.

В тонком кишечнике происходит полостное и пристеночное пищеварение.а) Полостное пищеварение – расщепление крупных полимерных молекул до олигомеров в полости кишечника под действием ферментов кишечного сока.

б) Пристеночное пищеварение – расщепление олигомеров до мономеров на поверхности микроворсинок под действием ферментов, фиксированных на этой поверхности.