Классификация геометрических моделей по внутреннему представлению. Виды геометрических моделей, их свойства, параметризация моделей. Системы геометрического моделирования

Среди всего разнообразия моделей, применяемых в науке и технике, самое широкое распространение получили математические модели. Под математическими моделями обычно понимаются различные математические конструкции, построенные на основе современной вычислительной техники, описывающие и воспроизводящие взаимосвязи между параметрами моделируемого объекта. Для установления связи между числом и формой существуют различные способы пространственно-числового кодирования. Простота и доступность решения практических задач зависит от удачно выбранной системы отсчета. Геометрические модели классифицируют на предметные (чертежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные модели. Графические построения могут служить для получения численных решений различных задач. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм – аналитические методы.

Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п. Графическая модель зависимости называется графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Например, диаграмма состояния (фазовая диаграмма), графически изображает соотношение между параметрами состояния термодинамически равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой.

Особенно интересным является использование геометрии для оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма.Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Приступая к изучению какого-либо конкретного явления, специалист, прежде всего, собирает факты, т.е. отмечает такие ситуации, которые поддаются экспериментальному наблюдению и регистрации с помощью органов чувств или специальных приборов. Экспериментальное наблюдение всегда носит проекционный характер, так как множеством фактов, неразличимых в данной ситуации (принадлежащих одному проектирующему образу) присваивается одно и то же название (проекция). Пространство, отнесенное к изучаемому явлению, называется операционным, а пространство, отнесенное к наблюдателю, – картинным. Размерность картинного пространства определяется возможностями и средствами наблюдения, т.е. вольно или невольно, сознательно и совершенно стихийно устанавливается экспериментатором, но всегда меньше размерности исходного пространства, которому принадлежат исследуемые объекты, обусловленные разнообразными связями, параметрами, причинами. Размерность исходного пространства очень часто остается не выявленной, т.к. существуют не выявленные параметры, которые влияют на исследуемый объект, но не известны исследователю или не могут быть учтены. Проекционный характер любого экспериментального наблюдения объясняется, прежде всего, невозможностью повторения событий во времени; это один из регулярно возникающих и неуправляемых параметров, независящих от воли экспериментатора. В некоторых случаях этот параметр оказывается несущественным, а в других случаях играет очень важную роль. Отсюда видно, какое большое и принципиальное значение имеют геометрические методы и аналогии при построении, оценке или проверке научных теорий. Действительно, каждая научная теория основывается на экспериментальных наблюдениях, а результаты этих наблюдений представляют собой – как сказано – проекцию изучаемого объекта. При этом реальный процесс может быть описан несколькими различными моделями. С точки зрения геометрии это соответствует выбору различного аппарата проектирования. Он различает объекты по одним признакам и не различает их по другим. Одной из наиболее важных и актуальных задач является выявление условий, при которых происходит сохранение или, наоборот, распадение детерминизма модели, полученной в результате эксперимента или исследования, так как практически всегда важно знать, насколько эффективна и пригодна данная гомоморфная модель. Решение поставленных задач геометрическими средствами оказалось уместным и естественным в связи с использованием указанных выше проекционных воззрений. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования. Совершенной модели соответствуют закономерности, устанавливающие однозначное или многозначное, но, во всяком случае, вполне определенное соответствие между некоторыми исходными и искомыми параметрами, описывающими изучаемое явление. В этом случае действует эффект схематизации, преднамеренное сокращение размерности картинного пространства, т.е. отказ от учета ряда существенных параметров, позволяющих экономить средства и избежать ошибок. Исследователь постоянно имеет дело с такими случаями, когда интуитивно незакономерные явления отличаются от закономерных явлений, где существует какая-то связь между параметрами, характеризующими исследуемый процесс, но пока не известен механизм действия этой закономерности, для чего в последствии ставится эксперимент. В геометрии этому факту соответствует различие между распавшейся моделью и совершенной моделью с неявно выраженным алгоритмом. Задачей исследователя в последнем случае является выявление алгоритма в проекции, элементов входа и элементов выхода. Закономерность, полученная в результате обработки и анализа некоторой выборки экспериментальных данных, может оказаться недостоверной из-за неверно сделанной выборки действующих факторов, подвергнутых исследованию, так как она оказывается лишь вырожденным вариантом более общей и более сложной закономерности. Отсюда возникает необходимость в повторных или натурных испытаниях. В геометрическом моделировании этому факту – получению неверного результата – соответствует распространение алгоритма для некоторого подпространства элементов входа, на все элементы входа (т.е. нестабильность алгоритма).

Простейшим реальным объектом, который удобно описывать и моделировать с помощью геометрических представлений, является совокупность всех наблюдаемых физических тел, вещей и предметов. Эта совокупность заполняет физическое пространство, которое можно рассматривать как исходный объект, подлежащий изучению, геометрическое пространство – как его математическую модель. Физические связи и отношения между реальными объектами заменяются позиционными и метрическими отношениями геометрических образов. Описание условий реальной задачи в геометрических терминах является очень ответственным и самым сложным этапом решения задачи, требующим сложной цепи умозаключений и высокого уровня абстракции, в результате которого реальное событие облекается в простую геометрическую конструкцию. Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

При решении многих задач начертательной геометрии возникает необходимость в преобразованиях изображений, полученных на плоскостях проекций. Коллинеарные преобразования на плоскости: гомология и аффинное соответствие – имеют существенное значение в теории начертательной геометрии. Так как любая точка на плоскости проекций является элементом модели точки пространства, уместно предположить, что любое преобразование на плоскости порождается преобразованием в пространстве и, наоборот, преобразование в пространстве вызывает преобразование на плоскости. Все преобразования, выполняемые в пространстве и на модели, проводятся с целью упрощения решения задач. Как правило, такие упрощения связаны с геометрическими образами частного положения и, следовательно, суть преобразований, в большинстве случаев, сводится к преобразованию образов общего положения в частное.

Построенная по методу двух изображений плоская модель трехмерного пространства вполне однозначно или, как говорят, изоморфно сопоставляет элементы трехмерного пространства с их моделью. Это позволяет решить на плоскостях практически любую задачу, которая может возникнуть в пространстве. Но иногда по некоторым практическим соображениям, бывает целесообразно дополнить такую модель третьим изображением объекта моделирования. Теоретической основой для получения дополнительной проекции служит геометрический алгоритм, предложенный немецким ученым Гауком.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи. Задачи, связанные с выявлением взаимного положения геометрических образов относительно друг друга, называются позиционными. В пространстве прямые линии и плоскости могут пересекаться и могут не иметь пересечения. Открытые позиционные задачи в исходном пространстве, когда кроме задания пересекающихся образов не требуется никаких построений, становятся закрытыми на плоской модели, так как алгоритмы их решения распадаются из-за невозможности выделения геометрических образов. В пространстве прямая линия и плоскость всегда имеют пересечение в собственной или несобственной точке (прямая параллельна плоскости). На модели плоскость задается гомологией. На эпюре Монжа плоскость задается родственным соответствием и для решения задачи необходимо реализовать алгоритм построения соответственных элементов в заданном преобразовании. Решение задачи на пересечение двух плоскостей сводится к определению линии, которая одинаково преобразуется в двух заданных родственных соответствиях. Позиционные задачи на пересечение геометрических образов, занимающих проецирующее положение, значительно упрощаются в связи вырожденностью их проекций и поэтому играют особую роль. Как известно, одна проекция проецирующего образа обладает собирательным свойством, все точки прямой линии вырождаются в одну точку, а все точки и линии плоскости вырождаются в одну прямую линию, поэтому позиционная задача на пересечение сводится к определению недостающей проекции искомой точки или линии. Учитывая простоту решения позиционных задач на пересечение геометрических образов, когда хотя бы один из них занимает проецирующее положение, можно решать позиционные задачи общего вида с помощью методов преобразования чертежа для преобразования одного из образов в проецирующее положение. Имеет место факт: различные пространственные алгоритмы на плоскости моделируются одним и те же алгоритмом. Это можно объяснить тем, что в пространстве существует алгоритмов на порядок больше, чем на плоскости. Для решения позиционных задач используются различные методы: метод сфер, метод секущих плоскостей, преобразования чертежа. Операция проецирования может рассматриваться как способ образования и задания поверхностей.

Существует большой круг задач, связанных с измерением длин отрезков, величин углов, площадей фигур и т. д. Как правило, эти характеристики выражаются числом (две точки определяют число, характеризующее расстояние между ними; две прямые определяют число, характеризующее величину образованного ими угла и т. д.), для определения которого используются различные эталоны или шкалы. Примером таких эталонов являются обычная линейка и транспортир. Для того чтобы определить длину отрезка, надо сравнить его с эталоном, например, линейкой. А как приложить линейку к прямой линии общего положения на чертеже? Масштаб линейки в проекциях будет искажаться, причем для каждого положения прямой будет свой масштаб искажения. Для решения метрических задач на чертеже необходимо задать опорные элементы (несобственную плоскость, абсолютную полярность, масштабный отрезок), используя которые можно построить любую шкалу. Для решения метрических задач на эпюре Монжа используют преобразования чертежа так, чтобы искомые образы не искажались хотя бы в одной проекции. Таким образом, под метрическими задачами будем понимать преобразования отрезков, углов и плоских фигур в положения, когда они изображаются в натуральную величину. При этом можно использовать различные способы. Существует общая схема решения основных метрических задач на измерение расстояния и углов. Наибольший интерес представляют конструктивные задачи, решениекоторых опирается на теорию решения позиционных и метрических задач. Под конструктивными задачами понимаются задачи, связанные с построением геометрических образов, отвечающих определенным теорем начертательной геометрии.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики. В процессе изучения теоретической механики и сопротивления материалов появляются качественно новые виды наглядности: схематичный вид конструкции, расчетная схема, эпюра. Эпюра – это разновидность графика, на котором показаны величина и знак различных внутренних силовых факторов, действующих в любой точке конструкции (продольных и поперечных сил, крутящих и изгибающих моментов, напряжений и т. д.). В курсе сопротивления материалов в процессе решения любой расчётной задачи требуется неоднократное перекодирование данных путём использования различных по своим функциям и уровням абстракции изображений. Схематичный вид, как первая абстракция от реальной конструкции, позволяет сформулировать задачу, выделить её условия и требования. Расчетная схема условно передаёт особенности конструкции, её геометрические характеристики и метрические соотношения, пространственное положение и направление действующих силовых факторов и реакций опор, точки характерных сечений. На её основе создаётся модель решения задачи, и она служит наглядной опорой в процессе реализации стратегии на разных этапах решения (при построении эпюры моментов, напряжений, углов закручивания и других факторов). В дальнейшем при изучении технических дисциплин идёт усложнение структуры используемых геометрических образов с широким использованием условно-графических изображений, знаковых моделей и их различных сочетаний. Таким образом, геометрические модели становятся интегрирующим звеном естественных и технических учебных дисциплин, а также методов профессиональной деятельности будущих специалистов. В основе становления профессиональной культуры инженера положена графическая культура, позволяющая разные виды деятельности объединить в рамках одной профессиональной общности. Уровень подготовки специалиста определяется тем, насколько развито и подвижно его пространст­венное мышление, так как, инвариантной функцией интеллектуальной деятельности инженера является оперирование образными графическими, схематическими и знаковыми моделями объектов.


Похожая информация.


Введение в трехмерное моделирование

Современные 3D – системы проектирования позволяют создавать трехмерные модели самых сложных деталей и сборок. Используя наглядные методы формирования объемных элементов, конструктор оперирует простыми и естественными понятиями основание, отверстие, фаска, ребро жесткости, оболочка и т. д. При этом процесс конструирования может воспроизводить технологический процесс изготовления детали. После создания 3D – модели изделия конструктор может получить его чертеж без рутинного создания видов средствами плоского черчения.

Геометрические модели

При решении большинства задач в области автоматизированного конструирования и технологической подготовки производства необходимо учитывать форму проектируемого изделия. Из этого следует, что геометрическое моделирование, понимаемое как процесс воспроизведения пространственных образов изделий и исследования характеристик изделий по этим образам, является ядром автоматизированного проектирования. Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчета различных характеристик изделий, технологических параметров его изготовления и т. д. На рис. 1. показано, какие задачи решаются с помощью геометрической модели в системе автоматизированного проектирования (САПР). Под геометрическими моделями понимаются модели, содержащие информацию о форме и геометрии изделия, технологическую, функциональную и вспомогательную информацию.

Рис. 1. Задачи, решаемые с помощью геометрической модели

Развитие методов и средств геометрического моделирования определило изменение ориентации графических подсистем САПР. В САПР можно выделить два вида построения графических подсистем:

1. Ориентированные на чертеж.

2. Ориентированные на объект.

Системы первого поколения, ориентированные на чертеж, обеспечивают необходимые условия для создания конструкторской документации. В таких системах создается не объект (деталь, узел), а графический документ.

Эволюция графических подсистем САПР привела к тому, что системы, ориентированные на чертеж, постепенно утрачивают свое значение (особенно в области машиностроения) и все большее распространение получают системы, ориентированные на объект. На рис. 2 показана эволюция ориентации графических подсистем САПР за последние десятилетия.

Рис. 2. Ядро графической подсистемы САПР:

а – чертеж; б – данные чертежа; в – трехмерная геометрическая модель

На начальных этапах разработки и внедрения САПР основным документом обмена между различными подсистемами был чертеж (рис. 2а). Следующее поколение графических подсистем использовало в качестве данных, через которые обеспечивался обмен с функциональными подсистемами САПР, данные чертежа (рис. 2б). Это позволило перейти на безбумажную технологию проектирования. В графических подсистемах, интегрированных САПР, ядром являются трехмерные геометрические модели проектируемых изделий (рис. 2в). При этом различные двумерные изображения трехмерной модели формируются в таких подсистемах автоматически.

Геометрическое моделирование

Векторная и растровая графика.

Графика бывает двух видов - векторная и растровая. Основное отличие - в принципе хранения изображения. Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и еще одно преимущество - при изменении размеров изображения не изменяется размер файла.Растровая графика - это прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей).

Растровое изображение можно сравнить с детской мозаикой, когда картинка составляется из цветных квадратиков. Компьютер запоминает цвета всех квадратиков подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большего объема памяти. Их сложно масштабировать и еще сложнее редактировать. Чтобы увеличить изображение, приходится увеличивать размер квадратиков, и тогда рисунок получается "ступенчатым". Для уменьшения растрового рисунка приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается, его мелкие детали становятся неразборчивыми. Этих недостатков лишена векторная графика. В векторных редакторах рисунок запоминается как совокупность геометрических фигур - контуров, представленных в виде математических формул. Чтобы пропорционально увеличить объект, достаточно просто изменить одно число: коэффициент масштабирования. Никаких искажений ни при увеличении, ни при уменьшении рисунка не возникает. Поэтому, создавая рисунок, вы можете не думать о его конечных размерах - вы всегда можете изменить их.

Геометрические преобразования

Ве́кторная гра́фика - это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Рассмотрим, к примеру, окружность радиуса r. Список информации, необходимой для полного описания окружности, таков:



радиус r ;

координаты центра окружности;

цвет и толщина контура (возможно прозрачный);

цвет заполнения (возможно прозрачный).

Преимущества этого способа описания графики над растровой графикой:

Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта).

Соответственно, можно бесконечно увеличить, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.

При увеличении или уменьшении объектов толщина линий может быть постоянной.

Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах ((англ.)), которые ведут к наилучшей возможной растеризации на растровых устройствах.

У векторной графики есть два фундаментальных недостатка.

Не каждый объект может быть легко изображен в векторном виде. Кроме того, количество памяти и времени на отображение зависит от числа объектов и их сложности.

Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет - трассировка растра обычно не обеспечивает высокого качества векторного рисунка.

Векторные графические редакторы, типично, позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять основные аффинные преобразования над объектами, изменять z-order и комбинировать примитивы в более сложные объекты.

Более изощрённые преобразования включают булевы операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д.

Векторная графика идеальна для простых или составных рисунков, которые должны быть аппаратно-независимыми или не нуждаются в фотореализме. К примеру, PostScript и PDF используют модель векторной графи

Линии и ломаные линии.

Многоугольники.

Окружности и эллипсы.

Кривые Безье.

Безигоны.

Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье).

Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях.

Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.

Основные виды геометрических моделей

Геометрические модели дают внешнее представление об объекте-оригинале и характеризуются одинаковыми с ним пропорциями геометрических размеров. Эти модели подразделяются на двумерные и трехмерные. Эскизы, схемы, чертежи, графики, живописные работы представляют собой примеры двумерных геометрических моделей, а макеты зданий, автомобилей, самолетов и т.д. – это трехмерные геометрические модели.

Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:

матрица поворота

матрица сдвига

матрица масштабирования

Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/промасштабированный относительно исходного

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Системы геометрического моделирования

Системы геометрического моделирования позволяют работать с формами в трехмерном пространстве. Они были созданы для того, чтобы преодолеть проблемы, связанные с использованием физических моделей в процессе проектирования, такие как - сложность получения сложных форм с точными размерами, а также сложностью извлечения необходимых сведений из реальных моделей для их точного воспроизведения.

Эти системы создают среду, подобную той, в которой создаются физические модели. Другими словами, в системе геометрического моделирования разработчик изменяет форму модели, добавляет и удаляет ее части, детализируя форму визуальной модели. Визуальная модель может выглядеть также как и физическая, но она нематериальна. Однако трехмерная визуальная модель хранится в компьютере вместе со своим математическим описанием, благодаря чему устраняется главный недостаток физической модели - необходимость выполнения измерений для последующего прототипирования или серийного производства. Системы геометрического моделирования делятся на каркасные, поверхностные, твердотельные и немногообразные.

Системы каркасного моделирования

В системах каркасного моделирования форма представляется в виде набора характеризующих ее линий и конечных точек. Линии и точки используются для предоставления трехмерных объектов на экране, а изменение формы осуществляется путем изменения положения и размеров отрезков и точек. Другими словами, визуальная модель представляет собой каркасный чертеж формы, а соответствующее математическое описание представляет собой набор уравнений кривых, координат точек и сведений о связности кривых и точек. Сведения о связности описывают принадлежность точек к конкретным кривым, а также пересечение кривых друг с другом. Системы каркасного моделирования были популярны в ту пору, когда ГМ только начало зарождаться. Их популярность объяснялась тем, что в системах каркасного моделирования создание форм выполнялось через последовательность простых действий, так что пользователям было достаточно легко создавать формы самостоятельно. Однако визуальная модель, состоящая из одних лишь линий, может быть неоднозначной. Более того, соответствующее математическое описание не содержит сведений о внутренних и внешних поверхностях моделируемого объекта. Без этих сведений невозможно рассчитать массу объекта, определить траектории перемещения или создать сетку для конечноэлементного анализа, несмотря на то, что объект кажется трехмерным. Поскольку эти операции являются неотъемлемой частью процесса проектирования, системы каркасного моделирования были постепенно вытеснены системами поверхностного и твердотельного моделирования.

Системы поверхностного моделирования

В системах поверхностного моделирования математическое описание визуальной модели включает в себя не только сведения о характеристических линиях и их конечных точках, но и данные о поверхностях. При работе с отображаемой на экране моделью изменяются уравнения поверхностей, уравнения кривых и координаты точек. Математическое описание может включать сведения о связности поверхностей - как поверхности соединяются друг с другом и по каким кривым. В некоторых приложениях эти сведения могут оказаться очень полезными.

Существуют три стандартных метода создания поверхностей в системах поверхностного моделирования:

1) Интерполяция входных точек.

2) Интерполяция криволинейных точек.

3) Трансляция или вращение заданной кривой.

Системы поверхностного моделирования используются для создания моделей со сложными поверхностями, потому что визуальная модель позволяет оценить эстетичность проекта, а математическое описание позволяет построить программы с точными расчетами траекторий движения.

Системы твердотельного моделирования

Предназначены для работы с объектами, состоящими из замкнутого объема, или монолита. В системах твердотельного моделирования, в отличии от систем каркасного и поверхностного моделирования, не допускается создание набора поверхностей или характеристических линий, если они не образуют замкнутого объема. Математическое описание объекта, созданного в системе твердотельного моделирования содержит сведения, по которым система может определить, где находится линия либо точка: внутри объема, снаружи него или на его границе. При этом можно получить любую информацию об объеме тела, а значит, могут быть использованы приложения, работающие с объектом на уровне объема, а не на поверхностях.

Однако системы твердотельного моделирования требуют большего количества входных данных по сравнению с количеством данных, дающих математическое описание. Если бы система требовала от пользователя ввода всех данных для полного математического описания, она стала бы слишком сложной для пользователей, и они бы отказались от нее. Поэтому разработчики таких систем стараются представить простые и естественные функции, чтобы пользователи могли работать с объемными формами, не вдаваясь в подробности математического описания.

Функции моделирования, поддерживаемые большинством систем твердотельного моделирования, могут быть разделены на пять основных групп:

1) Функции создания примитивов, а также функции добавления, вычитания объема - булевские операторы. Эти функции позволяют проектировщику быстро создать форму, близкую к окончательной форме детали.

2) Функции создания объемных тел путем перемещения поверхности. Функция заметания позволяет создавать объемное тело трансляцией или вращением области, заданной на плоскости.

3) Функции, предназначенные главным образом для изменения существующей формы. Типичными примерами являются функции скругления или плавного сопряжения и поднятия.

4) Функции позволяющие непосредственно манипулировать составляющими объемных тел, то есть по вершинам, ребрам и граням.

5) Функции, используя которые проектировщик может моделировать твердое тело при помощи свободных форм.

Немногообразные системы моделирования

Системы твердотельного моделирования позволяют пользователю создавать тела с замкнутым объемом, то есть, говоря математическим языком, тела, представляющие собой многообразия. Другими словами, такие системы запрещают создание структур, не являющихся многообразными. Нарушениями условия многообразности являются, например касание двух поверхностей в одной точке, касание двух поверхностей вдоль открытой или замкнутой кривой, два замкнутых объема с общей гранью, ребром или вершиной, а также поверхности, образующие структуры типа сот.

Запрет на создание немногообразных моделей считался одним из достоинств систем твердотельного моделирования, поскольку благодаря этому любую созданную в такой системе модель можно было бы изготовить. Если же пользователь хочет работать с системой геометрического моделирования на протяжении всего процесса разработки, это достоинство оборачивается другой стороной.

Абстрактная модель со смешением измерений удобна тем, что она не стесняет творческую мысль конструктора. Модель со смешанными измерениями может содержать свободные ребра, слоистые поверхности и объемы. Абстрактная модель полезна также тем, что она может служить основой для проведения анализа. На каждом этапе процесса проектирования могут применяться свои аналитические средства. Например, методом конечных элементов, непосредственно на исходном представлении модели, что позволяет автоматизировать обратную связь между этапами проектирования и анализа, которая в настоящий момент реализуется конструктором самостоятельно. Немногообразные модели незаменимы как этап развития проекта от неполного описания на низких уровнях до готового объемного тела. Системы немногообразного моделирования позволяют использовать каркасные, поверхностные, твердотельные и сотовые модели одновременно в одной и той же среде моделирования, расширяя диапазон доступных моделей.

Описание поверхностей

Важной составной частью геометрических моделей является описание поверхностей. Если поверхности детали -- плоские грани, то модель может быть выражена достаточно просто определенной информацией о гранях, ребрах, вершинах детали. При этом обычно используется метод конструктивной геометрии. Представление с помощью плоских граней имеет место и в случае более сложных поверхностей, если эти поверхности аппроксимировать множествами плоских участков -- полигональными сетками. Тогда можно поверхностную модель задать одной из следующих форм:

1) модель есть список граней, каждая грань представлена упорядоченным списком вершин (циклом вершин); эта форма характеризуется значительной избыточностью, так как каждая вершина повторяется в нескольких списках;

2) модель есть список ребер, для каждого ребра заданы инцидентные вершины и грани. Однако аппроксимация полигональными сетками при больших размерах ячеек сетки дает заметные искажения формы, а при малых размерах ячеек оказывается неэффективной по вычислительным затратам. Поэтому более популярны описания неплоских поверхностей кубическими уравнениями в форме Безье или 5-сплайнов.

Знакомство с этими формами удобно выполнить, показав их применение для описания геометрических объектов первого уровня -- пространственных кривых.

Примечание. Геометрическими объектами нулевого, первого и второго уровней называют соответственно точки, кривые, поверхности.

В подсистемах МГиГМ используются параметрически задаваемые кубические кривые

геометрический конструктивный моделирование поверхность

x(t) = axt3 + bxt2 + cxt + dx ;

y(t) = ay t3 +X by t2 + cy t + dy ;

z(t) = a.t3 + b_t2 + cj + d_,

где 1 > t > 0. Такими кривыми описывают сегменты аппроксимируемой кривой, т. е. аппроксимируемую кривую разбивают на сегменты и каждый сегмент аппроксимируют уравнениями (3.48).

Применение кубических кривых обеспечивает (соответствующим выбором четырех коэффициентов в каждом из трех уравнений) выполнение четырех условий сопряжения сегментов. В случае кривых Безье этими условиями являются прохождение кривой сегмента через две заданные концевые точки и равенство в этих точках касательных векторов соседних сегментов. В случае 5-сплайнов выполняются условия непрерывности касательного вектора и кривизны (т. е. первой и второй производных) в двух концевых точках, что обеспечивает высокую степень гладкости кривой, хотя прохождение аппроксимирующей кривой через заданные точки здесь не обеспечивается. Применение полиномов выше третьей степени не рекомендуется, так как велика вероятность появления волнистости.

В случае формы Безье коэффициенты в (3.48) определяются, во-первых, подстановкой в (3.48) значений (=0к(=1и координат заданных концевых точек Р, и Р4 соответственно, во-вторых, подстановкой в выражения производных

dx/dt = За t2 + 2b + с, X X х"

dy/dt = За, Г2 + 2byt + с,

dz/dt = 3a.t2 + 2b.t + с.

тех же значений / = 0 и / = 1 и координат точек Р2 и Р3, задающих направления касательных векторов (рис. 3.27). В результате для формы Безье получаем

Кривая Безье. (3.27)

для которых матрица М имеет иной вид и представлена в табл. 3.12, а векторы Gx, Gy, G содержат соответствующие координаты точек Р, 1; Р, Р, + 1, Р, + 2.

Покажем, что в точках сопряжения для первой и второй производных аппроксимирующего выражения выполняются условия непрерывности, что требуется по определению В-сплайна. Обозначим участок аппроксимирующего В-сплайна, соответствующий участку [Р, Р +1] исходной кривой, через . Тогда для этого участка и координаты х в точке сопряжения Q/+ , имеем t = 1 и

Для участка в той же точке Qi+| имеем t = 0 и

т. е. равенство производных в точке сопряжения на соседних участках подтверждает непрерывность касательного вектора и кривизны. Естественно, что значение х координаты х точки Qi+1 аппроксимирующей кривой на участке .

равно значению х, подсчитанному для той же точки на участке , но значения координат узловых точек х и х+] аппроксимирующей и аппроксимируемой кривых не совпадают.

Аналогично можно получить выражения для форм Безье и 5-сплайнов применительно к поверхностям с учетом того, что вместо (3.48) используются кубические зависимости от двух переменных.

Размещено на Allbest.ru

Подобные документы

    Статические и динамические модели. Анализ имитационных систем моделирования. Система моделирования "AnyLogic". Основные виды имитационного моделирования. Непрерывные, дискретные и гибридные модели. Построение модели кредитного банка и ее анализ.

    дипломная работа , добавлен 24.06.2015

    Задачи оптимизации сложных систем и подходы к их решению. Программная реализация анализа сравнительной эффективности метода изменяющихся вероятностей и генетического алгоритма с бинарным представлением решений. Метод решения задачи символьной регрессии.

    диссертация , добавлен 02.06.2011

    Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.

    презентация , добавлен 16.10.2014

    Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

    реферат , добавлен 09.09.2010

    Эффективность макроэкономического прогнозирования. История возникновения моделирования экономики в Украине. Особенности моделирования сложных систем, направления и трудности моделирования экономики. Развитие и проблемы современной экономики Украины.

    реферат , добавлен 10.01.2011

    Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.

    контрольная работа , добавлен 06.11.2009

    Теоретические и методологические основы моделирования развития фирм с рентноориентированным управлением. Экономико-математические основы моделирования динамически сложных систем. Функция заимствования: понятие, сущность, свойства, аналитический вид.

    дипломная работа , добавлен 04.02.2011

    Создание комбинированных моделей и методов как современный способ прогнозирования. Модель на основе ARIMA для описания стационарных и нестационарных временных рядов при решении задач кластеризации. Модели авторегрессии AR и применение коррелограмм.

    презентация , добавлен 01.05.2015

    Методика получения оценок, используемых в процедурах проектирования управленческих решений. Прикладное использование модели многофакторной линейной регрессии. Создание ковариационной матрицы данных и производных от неё паттернов проектирования решений.

    статья , добавлен 03.09.2016

    Анализ сложных систем. Проведение экономического исследования с применением технологии компьютерного моделирования. Построение блок-схем, маршрутов потоков сообщений. Разработка модели работы автобусного маршрута. Многовариантные расчеты модели.

Это модели, которые с определённой точностью описывают геометрические свойства проектируемого объекта. Геометрические свойства – это пространственное отношение и формы (фигуры). В геометрии понятие пространство и фигуры определяется исходя из понятия множества. Пространство определяется как множество каких-либо элементов (точек), а фигура определяется как произвольное множество точек в данном пространстве.

В САПР используется математическое представление геометрической модели. Наука, которая занимается этим – инженерная (прикладная) геометрия. При геометрическом моделировании объект проектирования предстаёт как геометрический объект (ГО). Для любого геометрического объекта можно определить совокупность независимых условий, однозначно задающих этот объект, то есть позволяющие для любой точки пространства установить, принадлежит эта точка объекту или нет. Такую совокупность независимых условий называют определителем геометрического объекта. В число условий входят геометрические фигуры (точки, линии, поверхности,) и определённая последовательность действий, посредством которых из этих геометрических фигур можно построить данный геометрический объект. Эта последовательность действий называется алгоритмом воспроизведения данного геометрического объекта.

Количественно геометрический объект характеризуется параметрами . При выделении параметров важно учитывать области их существования, например, для треугольника числа, выражающие длины сторон, всегда больше нуля и сумма двух чисел больше третьего числа.

Для описания геометрической фигуры необходимо выделить параметры двух типов – формы и положения . Параметры формы характеризуют размеры и форму геометрической фигуры, они не изменяются при изменении положения фигуры в пространстве; параметры положения характеризуют положение геометрической фигуры в пространстве. Параметризация формы производится в системе координат, которая связана с самой фигурой и перемещается вместе с ней. Параметризация положения фигуры производится в системе координат независимо от фигуры.

При описании геометрического объекта различают подмножества граничных точек – поверхность геометрического объекта ; и подмножество внутренних точек – тело геометрического объекта .

Геометрические объекты бывают сложной формы и сложной структуры. Геометрические объекты сложной формы – это те, у которых поверхность сложного характера (например, корпус судна, автомобиля). Геометрические объекты сложной структуры – состоящие из нескольких ГО.

В автоматизированном проектировании известны два основных подхода к геометрическому модулированию:

Первый подход состоит в том, что выделяется некоторый набор геометрических фигур, которые в данном классе задач считаются элементарными (базовыми). Наряду с геометрическим набором вводится набор действий – геометрических операций над этим набором. Геометрический объект в этом случае называется составным (конструктивным).

Второй подход непосредственное описание и воспроизведение геометрических свойств объекта без использования вспомогательных, заранее заготовленных фиксированных фигур. В этом случае непосредственно описывается закон образования геометрического объекта как множество точек, обладающих соответствующими свойствами.

Подход, основанный на «прямом» моделировании геометрического объекта, в зависимости от способа формирования можно разделить на кусочно-аналитические и алгебро-логические модели объекта .

В кусочно-аналитических моделях поверхность объекта представляется отдельными кусками гладких поверхностей, называемыми гранями. Каждая грань задаётся своим уравнением поверхности и границами грани. Рёбра геометрического объекта или границы грани есть линии пересечения поверхностей, ограничивающие геометрический объект. Точки пересечения рёбер называются вершинами .

Существует три вида моделей: стержневая, оболочная и объемная.

Стержневая модель геометрического объекта позволяет весьма просто дать форму изображения проектируемого объекта путём построения проволочно-каркасной модели геометрического объекта. В такой модели описываются только рёбра и вершины геометрического объекта, грани не описываются (рис.1а).Ребра представлены в виде стержней, соединенных в узлах (вершинах 1,2,3....). Основными уравнениями для описания такой модели являются уравнения прямой линии в трехмерном пространстве. Такая модель является подмоделью, но она позволяет оперативно осуществлять вывод изображения геометрического объекта, а также выполнять такие операции, как построение аксонометрических и перспективных проекций.


Математическое описание моделей такого рода сравнительно простое, что обуславливает высокое быстродействие программного обеспечение. К недостаткам таких моделей следует отнести сложность или невозможность представления внутреннего облика объекта, построения произвольных его разрезов и сечений.

Геометрические модели объекта

а – стержневая; б - оболочечная

Оболочечная модель объекта (рис.1б) , основана на представлении внешнего облика объекта в виде совокупности поверхностей, являющихся гранями модели (А, Б, В...). Линии пересечения поверхностей образуют ребра модели.

Такая модель описывается системой уравнений поверхностей и может быть использована для моделирования внешнего облика объектов любой формы. Основной ее недостаток невозможность представления внутреннего облика объекта, построение его разрезов и сечений.


Наиболее современной моделью, нашедшее широкое применение в САПР, является объемная (твердотелая модель). Общепринятым порядком моделирования твердого тела является последовательность выполнения булевых операций (объединение, вычитание и пересечение) над объемными элементами (сферы, призмы, цилиндры, конусы, пирамиды и т.д.). Эти элементы описываются теми же уравнениями, что и поверхности оболочечной модели, однако объемные элементы считаются заполненными. Пример выполнения операций с объемными элементами показан на рис.2.

Рис.2. Операции с объемными элементами