Разрушение озонового слоя способствует. Разрушение озонового слоя. Методы борьбы. Причины разрушения и истощения озонового слоя Земли

Одной из глобальных экологических проблем, требующих своего кардинального решения, является разрушение озонового слоя. Этот термин принят для обозначения пика концентрации озона в стратосфере, который служит в качестве эффективного экрана, разрушающего ультрафиолетовое излучение. Озон представляет собой разновидность кислорода, он образуется при воздействии на газообразный кислород ультрафиолетового света в верхних слоях атмосферы. Озоновый слой, находящийся примерно на высоте 24 км, защищает земную поверхность от губительных ультрафиолетовых лучей Солнца.

Обеспокоенность состоянием озонового слоя была впервые высказана в 1974 г., когда было установлено, что фторуглеводороды могут разрушать озоновый слой, защищающий Землю от ультрафиолетового излучения. Выбрасываемые в атмосферу фторированные и хлорированные углеводороды (ФХУ) и галогенные соединения (галоны) разрушают хрупкую структуру этого слоя. Озоновый слой истощается, что обусловливает появление так называемых «озоновых дыр». Проникающие ультрафиолетовые лучи солнца опасны для всего живого на Земле. Особенно отрицательно они воздействуют на здоровье человека, его имунную и генную системы, вызывая рак кожи и катаракту. Разрушение озонового слоя ведет к росту ультрафиолетового излучения, что в свою очередь приведет к росту инфекционных заболеваний.

Ультрафиолетовые лучи могут уничтожить планктон - крошечные организмы, составляющие основу цепи питания в океане. Они также опасны для растительного мира на суше, в том числе для сельскохозяйственных культур. По оценкам, уменьшение озона на 25% приводит к потерям 10% основных веществ в освещенном, теплом и биологически богатом верхнем слое океана и к потерям в 35% - вблизи поверхности воды. Так как планктон составляет основу цепи питания в море, изменения его количества и видового состава будут оказывать влияние на добычу рыбы и моллюсков. Потери такого рода будут оказывать прямое влияние на снабжение продуктами питания. То есть изменение уровня ультрафиолетового излучения в результате истощения озонового слоя Земли может оказать существенное влияние на производство продуктов питания. Как показывают исследования Королевской Академии наук Швеции, в результате влияния данного фактора урожайность сои уменьшилась на 20-25% при уменьшении озона на 25%. Также снижается содержание белка и масла в бобах. Леса также оказались уязвимыми, особенно хвойные породы деревьев.

Этапы разрушения озонового слоя:

1)Эмиссии: в результате деятельности человека, а также в результате природных процессов на Земле эмитируются (высвобождаются) газы, содержащие галогены (бром и хлор), т.е. вещества, разрушающие озоновый слой.

2)Аккумулирование (эмитированные газы, содержащие галогены, аккумулируются (накапливаются) в нижних атмосферных слоях, и под воздействием ветра, а также потоков воздуха перемещаются в регионы, которые не находятся в прямой близости с источниками такой эмиссии газов).

3)Перемещение (аккумулированные газы, содержащие галогены, с помощью потоков воздуха перемещаются в стратосферу).

4)Преобразование (бóльшая часть газов, содержащих галогены, под воздействием ультрафиолетового излучения Солнца в стратосфере преобразуется в легко реагирующие галогенные газы, в результате чего в полярных регионах Земного шара разрушение озонового слоя происходит сравнительно активнее).

5)Химические реакции (легко реагирующие галогенные газы вызывают разрушение озона стратосферы; фактор, способствующий реакциям – полярные стратосферные облака).

6)Удаление (под воздействием воздушных потоков легко реагирующие галогенные газы возвращаются в тропосферу, где из-за присутствующей в облаках влажности и дождей разделяются, и таким образом из атмосферы полностью удаляются).

7. Загрязнение вод

Загрязнение вод проявляется в изменении физических и органолептических свойств (нарушение прозрачности, окраски, запахов, вкуса), увеличении содержания сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращении растворенного в воде кислорода воздуха, появлении радиоактивных элементов, болезнетворных бактерий и других загрязнителей.

Главные загрязнители вод . Установлено, что более 400 видов веществ могут вызвать загрязнение вод. В случае превышения допустимой нормы хотя бы по одному из трех показателей вредности: санитарно-токсикологическому, общесанитарному или органолептическому, вода считается загрязненной.

Различают химические, биологические и физические загрязнители (П. Бертокс, 1980). Среди химических загрязнителей к наиболее распространенным относят нефть и нефтепродукты, СПАВ (синтетические поверхностно-активные вещества), пестициды, тяжелые металлы, диоксины и др. (табл. 14.1). Очень опасно загрязняют воду биологические загрязнители , например вирусы и другие болезнетворные микроорганизмы, и физические - радиоактивные вещества, тепло и др.

Основные виды загрязнения вод. Наиболее часто встречается химическое и бактериальное загрязнение. Значительно реже наблюдается радиоактивное, механическое и тепловое загрязнение.

Химическое загрязнение - наиболее распространенное, стойкое и далеко распространяющееся. Оно может быть органическим (фенолы, нафтеновые кислоты, пестициды и др.) и неорганическим (соли, кислоты, щелочи), токсичным (мышьяк, соединения ртути, свинца, кадмия и др.) и нетоксичным. При осаждении на дно водоемов или при фильтрации в пласте вредные химические вещества сорбируются частицами пород, окисляются и восстанавливаются, выпадают в осадок, и т.д., однако, как правило, полного самоочищения загрязненных вод не происходит. Очаг химического загрязнения подземных вод в сильно проницаемых грунтах может распространяться до 10 км и более.

Бактериальное загрязнение выражается в появлении в воде патогенных бактерий, вирусов (до 700 видов), простейших, грибов и др. этот вид загрязнений носит временный характер.

Весьма опасно содержание в воде, даже при очень малых концентрациях, радиоактивных веществ, вызывающих радиоактивное загрязнение

Механическое загрязнение характеризуется попаданием в воду различных механических примесей (песок, шлам, ил и др.). Механические примеси могут значительно ухудшать органолептические показатели вод.

ЗАГРЯЗНЕНИЕ ПОДЗЕМНЫХ ВОД

обусловленное антропогенной деятельностью ухудшение качества подземных вод (по физическим, химическим или биологическим показателям) по сравнению с их естественным состоянием, что приводит или может привести к невозможности их использования в заданных целях

Проблема загрязнения подземных вод усугубляется тем, что в условиях характерной для подземных горизонтов анаэробной восстановительной среды, постоянно низких температур, отсутствия солнечного света процессы самоочищения резко замедлены.

основные виды источников загрязнения подземных вод .Промышленные площадки предприятий , связанных с получением или использованием в качестве сырья веществ, способных мигрировать с подземными водами.Места хранения и транспортировки промышленной продукции и отходов производства.

Особенно большую опасность для загрязнения подземных вод представляют хранилища пестицидов , в том числе запрещенных к употреблению, а также недействующие скважины на животноводческих фермах.

Особенности загрязнения подземных вод связаны с тем, что при низких температурах, отсутствии солнечного света, недостатке или отсутствии кислорода процессы самоочищения протекают крайне замедленно, нередко развиваются вторичные процессы, усиливающие эффект загрязнения.

8. АНТРОПОГЕННОЕ ЭВТРОФИРОВАНИЕ.

Хотя эвтрофирование водоемов является природным процессом и его развитие оценивается в рамках геологических масштабов времени, однако за несколько последних веков человек существенно увеличил использование биогенных веществ, особенно в сельском хозяйстве в качестве удобрений и детергентов. Во многих водоемах в течение нескольких последних десятилетий наблюдается возрастание трофии, сопровождающееся резким увеличением обилия фитопланктона, зарастания водной растительностью прибрежных мелководий и изменение качества воды. Этот процесс стали называть антропогенным эвтрофированием.

Шилькрот Г.С. (1977) определяет антропогенное эвтрофирование как увеличение первичной продукции водоема и связанного с этим изменение ряда его режимных характеристик в результате возрастающей добавки в водоем минеральных питательных веществ. На Международном симпозиуме по вопросам эвтрофирования поверхностных вод (1976) принята следующая формулировка - "антропогенное эвтрофирование - это увеличение поступления в воду питательных для растений веществ вследствие деятельности человека в бассейнах водных объектов и вызванное этим повышение продуктивности водорослей и высших водных растений".

Антропогенное эвтрофирование водоемов стали рассматривать как самостоятельный процесс, принципиально отличающийся от естественного эвтрофирования водоемов.

Естественное эвтрофирование - процесс очень медленный во времени (тысячи, десятки тысяч лет), развивается главным образом вследствие накопления донных отложений и обмеления водоемов.

Антропогенное эвтрофирование - процесс очень быстрый (годы, десятки лет), отрицательные последствия его для водоемов проявляются зачастую в очень резкой и уродливой форме.

ПОСЛЕДСТВИЯ ЭВТРОФИРОВАНИЯ

К числу наиболее наглядных проявлений последствий эвтрофирования относится "цветение" воды. В пресных водах оно обусловлено массовым развитием сине-зеленых водорослей, в морских - динофлагеллятами. Продолжительность цветения воды колеблется от нескольких дней до 2-х месяцев. Периодическая смена максимумов численности отдельных массовых видов планктонных водорослей в водоемах представляет закономерное явление, обусловленное сезонными колебаниями температуры, освещенности, содержания биогенных элементов, а также генетически детерминированными внутриклеточными процессами. Среди водорослей, образующих многочисленные популяции до масштабов "цветения" воды наибольшую роль по темпам размножения, образуемой биомассе и экологическим последствиям играют сине-зеленые из родов Microcystis, Aphanizomenon, Anabaena, Oscillatoria. Научное изучение этого явления началось в 19 веке, а рациональное объяснение и анализ механизмов массового размножения сине - зеленых были даны только в сер. 20 века в США лимнологической школой Дж. Хатчинсона. Аналогичные исследования проводились в ИБВВ РАН (Борок) Гусевой К.А. и в 60-70-е годы коллективом Института гидробиологии (Украина), в конце 70-х - Институтом Великих озер (США).

Водоросли, вызывающие "цветение" воды, принадлежат к числу видов, способных к предельному насыщению своих биотопов. В водохранилищах Днепра, Волги и Дона в основном доминируют Microcystis aeruginosa, M. wesenbergii, M. holsatica, Oscillatoria agardhii, Aphanizomenoen flos-aquae, виды рода Anabaena.

Установлено, что исходный биофонд Microcystis зимой находится в поверхностном слое иловых отложений. Microcystis зимует в виде ослизненных колоний, внутри которых скопления мертвых клеток покрывают единственную живую. По мере повышения температуры центральная клетка начинает делиться, причем на первом этапе источником пищи являются мертвые клетки. После распада колоний клетки начинают утилизировать органические и биогенные вещества ила.

Aphanizomenon и Anabaena зимуют в виде спор, пробуждающихся к активной жизни при повышении температуры до +6 С0. Другим источником биофонда сине - зеленых водорослей является их скопления, выброшенные на берега и зимующие в слое сухих корок. Весной они отмокают и начинается новый цикл вегетации.

Первоначально водоросли питаются осмотически и биомасса накапливается медленно, затем всплывают и начинают активно фотосинтезировать. За короткий срок водоросли могут захватывать всю толщу воды и формируют сплошной ковер. В мае обычно доминируют Anabaena, в июне - Aphanizomenon, с конца июня -июль-август - Microcystis и Aphanizomenon. Механизм взрывного характера размножения водорослей был раскрыт работами Института Великих озер (США). Учитывая колоссальный потенциал размножения сине - зеленых водорослей (до 1020 потомков одной клетки за сезон), можно отчетливо представить масштабы, которые принимает этот процесс. Поэтому фактором первичного эвтрофирования водохранилищ является обеспеченность их фосфором за счет залития плодородных пойменных земель и разложения растительности. Фактором вторичного эвтрофирования - процесс заиления, поскольку илы - идеальный субстрат для водорослей.

После интенсивного размножения под действием стягивающих электростатических сил начинается формирование колоний, стягивание колоний в агрегаты и слияние их в пленки. Образуются "поля" и "пятна цветения", мигрирующие по акватории под воздействием течений и сгоняемые к берегам, где образуются разлагающиеся скопления с огромной биомассой `- до сотен кг/м3.

Разложение сопровождается рядом опасных явлений: дефицитом кислорода, выделением токсинов, бактериальным загрязнением, образованием ароматических веществ. В этот период могут возникать помехи в водоснабжении вследствие забивания фильтров на водопроводных станциях, становится невозможной рекреация, возникают заморы рыб. Вода, насыщенная продуктами метаболизма водорослей, аллергенна, токсична и непригодна для питьевых целей.

Она может вызывать свыше 60 заболеваний, особенно желудочно-кишечного тракта, подозревается, хотя и не доказана, ее онкогенность. Воздействие метаболитов и токсинов сине - зеленых вызывает у рыб и теплокровных животных "гаффскую болезнь", механизм действия которой сводится к возникновению B1 авитоминоза.

При массовом отмирании сине - зеленых происходит быстрый распад и лизис колоний, особенно в ночные часы. Предполагается, что причиной массового отмирания может быть массовое отравление собственными токсинами, а толчком - симбиотические вирусы, которые не способны разрушать клетки, но способные ослабить их жизнедеятельность.

Нагонные разрушающиеся массы сине-зеленых водорослей приобретают неприятную желто-бурую окраску и в виде дурно пахнущих скоплений разносятся по акватории, постепенно разрушаясь к осени. Весь этот комплекс явлений получил название "биологического самозагрязнения". Незначительное количество ослизненных колоний оседает на дно и перезимовывает. Этот резерв вполне достаточен для воспроизводства новых генераций.

Сине-зеленые водоросли - это древнейшая группа организмов, обнаруживаемая даже в архейских отложениях. Современные условия и антропогенная нагрузка лишь вскрыли их потенции и дали им новый импульс для развития.

Сине-зеленые подщелачивают воду и создают благоприятные условия для развития патогенной микрофлоры и возбудителей кишечных заболеваний, в том числе холерного вибриона. Отмирая и переходя в состояние фитодетрита, водоросли влияют на кислород глубинных слоев воды. Сине-зеленые в период цветения сильно поглощают коротковолновую часть видимого света, разогреваются и являются источником ультракороткого излучения, что может влиять на термический режим водоема. Уменьшается величина поверхностного натяжения, что может вызывать отмирание гидробионтов, обитающих в поверхностной пленке. Образование поверхностной пленки, экранизирующей проникновение в толщу воды солнечной радиации, вызывает световое голодание у других водорослей, замедляет их развитие.

Например, суммарная биомасса сине - зеленых водорослей, продуцирующих за период вегетации в водохранилищах Днепра, достигает величин порядка 106 т (в сухой массе). Это соответствует массе тучи саранчи, которую В.И. Вернадский назвал "горной породой в движении" и сравнивал с массой меди, свинца и цинка, добытых в течение 19 века во всем мире.

Последствия эвтрофирования для фитопланктона

Антропогенное эвтрофирование приводит к изменению характера сезонной динамики фитопланктона. По мере увеличения трофии водоемов увеличивается число пиков в сезонной динамике его биомассы. В структуре сообществ роль диатомовых и золотистых водорослей снижается, а увеличивается - сине - зеленых и динофитовых. Динофлагелляты характерны для стратифицированных глубоководных озер. Также увеличивается роль хлорококковых зеленых и эвгленовых водорослей.

Последствия эвтрофирования для зоопланктона. Преобладание видов с коротким жизненным циклом (ветвистоусых рачков и коловраток), преобладание мелких форм. Высокая продукция, небольшая доля хищников. Упрощается сезонная структура сообществ - одновершинная кривая с максимумом летом. Меньшее число доминирующих видов.

Последствия эвтрофирования для фитобентоса. Усиленное развитие нитчатых водорослей. Исчезновение харовых водорослей, которые не выносят высокие концентрации биогенов, особенно фосфора. Характерный признак - расширение площадей зарастания тростника обыкновенного, рогоза широколистного и манника, рдеста гребенчатого.

Последствия эвтрофирования для зообентоса.

Нарушение кислородного режима в придонных слоях приводит к изменению в составе зообентоса. Важнейшим признаком эвтрофирования является снижение личинок поденок гексании в оз. Эри - важный кормовой объект лососевых рыб в озере. Менее чувствительные к дефициту кислорода личинки некоторых двукрылых насекомых приобретают все большее значение. Возрастает плотность популяций малощетинковых червей. Бентос становится беднее и однообразнее. В составе преобладают организмы, приспособленные к пониженному содержанию кислорода. На поздних этапах эвтрофирования в глубинной области водоемов остаются немногие организмы, приспособленные к условиям анаэробного обмена.

Последствия эвтрофирования для ихтиофауны.

Эвтрофирование водоемов оказывает влияние на рыбное население в 2-х основных формах:

прямое влияние на рыб

прямое влияние относительно редко. Оно проявляется как единичная или массовая гибель икры и молоди рыб в береговой зоне и происходит при поступлении стоков, содержащих летальные концентрации минеральных и органических соединений. Такое явление обычно носит локальный характер и не охватывает водоем в целом.

опосредованное влияние, проявляющееся через разнообразные изменения водных экосистем

опосредованное влияние наиболее распространено. При эвтрофировании может возникать зона с пониженным содержанием кислорода и даже заморная зона. В этом случае сокращается сфера обитания рыб, уменьшается доступная для них кормовая база. Цветение воды создает неблагоприятный гидрохимический режим. Смена растительных ассоциаций в прибрежье, нередко сопровождающаяся усилением процессов заболачивания, приводит к сокращению площадей нерестилищ и мест нагула личинок и молоди рыб.

Изменения в ихтиофауне водоемов под влиянием эвтрофирования проявляется в следующих формах:

Снижение численности, затем исчезновение наиболее требовательных к качеству воды видов рыб (стенобионтов).

Изменение рыбопродуктивности водоема или отдельных его зон.

Переход водоема их одного рыбохозяйственного типа в другой по схеме:

лососево-сиговый → лещево-судачий → лещево-плотвичный → плотвично-окуневый-карасевый.

Это схема аналогична преобразованию озерных ихтиоценозов в ходе исторического развития водных экосистем. Однако под влиянием антропогенного эвтрофирования она совершается в течение нескольких десятилетий. В результате сначала исчезают сиговые рыбы (а в редких случаях лососи). Вместо них ведущими становятся карповые (лещ, плотва, и др.) и в меньшей степени окуневые (судак, окунь). Причем из карповых лещ постепенно вытесняется плотвой, из окуневых господствует окунь. В предельных случаях водоемы переходят в заморное состояние и населяется преимущественно карасем.

На рыбах подтверждаются общие закономерности в изменении в структуре сообществ - длинноцикловые виды замещаются короткоцикловыми. Отмечается рост рыбопродуктивности. Однако при этом ценные сиговые виды замещаются видами, обладающими невысокими товарными качествами. Сначала крупночастиковые - лещ, судак, затем мелкочастиковые - плотва, окунь.

Часто последствия для рыбного населения носят необратимый характер. При возвращении уровня трофии к исходному состоянию исчезнувшие виды появляются далеко не всегда. Их восстановление возможно лишь при наличии доступных путей расселения из соседних водоемов. Для ценных видов (сиг, ряпушка, судак) вероятность такого расселения невелика.

ПОСЛЕДСТВИЯ ЭВТРОФИРОВАНИЯ ВОДОЕМОВ ДЛЯ ЧЕЛОВЕКА

Основным потребителем воды является человек. Как известно, при избыточной концентрации водорослей происходит ухудшение качества воды.

Особое внимание заслуживают токсические метаболиты, в частности сине-зеленых водорослей. Альготоксины проявляют значительную биологическую активность по отношению к различным гидробионтам и теплокровным животным. Альготоксины относятся к высокотоксичным соединениям. Токсин сине - зеленых действует на центральную нервную систему животных, что приявляется в возникновении параличей задних конечностей, десинхронизации ритма центральной нервной системы. При хронических отравлениях токсин угнетает окислительно-восстановительные ферментативные системы, холинэстеразу, повышает активность альдолазы, в результате чего нарушается углеродный и белковый обмен, а во внутренних средах организма накапливаются недоокисленные продукты углеводного обмена. Уменьшение количества эритроцитов, угнетение тканевого дыхания вызывает гипоксию смешанного типа. В результате глубокого вмешательства в обменные процессы и тканевое дыхание теплокровных животных токсин сине - зеленых имеет широкий спектр биологического действия и может быть отнесен к числу протоплазматических ядов высокой биологической активности. Все это свидетельствует о недопустимости использования в питьевых целях воды из мест скопления водорослей и водоемов, подверженных сильному цветению, поскольку токсическое вещество водорослей не обезвреживается системами обычной водоочистки и может попадать в водопроводную сеть как в растворенном виде, так и вместе с отдельными клетками водорослей, не задерживаемыми фильтрами.

Загрязнение и ухудшение качества воды может отражаться на здоровье человека через ряд трофических звеньев. Так загрязнение воды ртутью явилось причиной ее накопления в рыбе. Употребление в пищу такой рыбы вызвало в Японии весьма опасное заболевание - болезнь Минимата, в результате которой отмечены многочисленные смертельные случаи, а также рождение слепых, глухих и парализованных детей.

Установлена связь между возникновением детской метгемоглобинемии и содержанием нитратов в воде, в результате чего более чем в 2 раза повысилась смертность маленьких девочек, родившихся в те месяцы, когда уровень нитратов был высоким. Отмечено высокое содержание нитратов в кукурузном поясе США в колодцах. Часто подземные воды не пригодны для питья. Возникновение менингоэнцефалита у подростков связывают после продолжительного купания в пруду или в реке в теплый летний день. Предполагается связь между заболеванием асептическим менингитом, энцефалитом и купанием в водоемах, что связано с усилением вирусного загрязнения воды.

Широкую известность приобрели инфекционные заболевания за счет микроскопических грибов, попадающих из воды в раны, вызывающие у человека сильное поражение кожи.

Контакт с водорослями, употребление воды из водоемов, подверженных цветению или рыбы, питающейся токсическими водорослями, вызывает "гаффскую болезнь", коньюктивиты и аллергии.

Часто в последние годы вспышки холеры приурочивают к периоду " цветения".

Массовое развитие водорослей в водоеме наряду с помехами водоснабжении и ухудшении качества воды значительно затрудняет рекреационное использование водного источника, а также является причиной помех в техническом водоснабжении. На стенках трубок водоводов и систем охлаждения усиливается развитие биообрастаний. При подщелачивании среды в следствие развития водорослей происходит образование твердых карбонатных отложений, а из-за оседания частиц и водорослей снижается теплопроводность трубок теплообменных устройств.

Таким образом, избыточное накопление водорослей в период интенсивного " цветения" воды является причиной биологического загрязнения водоемов и значительного ухудшения качества природных вод.

Выберите один правильный ответ из нескольких предложенных.

1. Глобальные экологические проблемы вызваны в первую очередь:

а) геологическими процессами;
б) космическими факторами;
в) высокими темпами прогресса;
г) изменением климата.

2. Основными природными факторами, влияющими на численность человеческих популяций являются:

а) особенности рельефа местности;
б) пищевые ресурсы и болезни;
в) особенности климата;
г) географическое положение страны.

3. Рациональное природопользование подразумевает:

а) деятельность, направленную на удовлетворение потребностей человечества;
б) деятельность, направленную на научно обоснованное использование, воспроизводство и охрану природных ресурсов;
в) добычу и переработку полезных ископаемых;
г) мероприятия, обеспечивающие промышленную и хозяйственную деятельность человека.

4. Полезные ископаемые недр планеты относятся к:

а) неисчерпаемым природным ресурсам;
б) возобновляемым природным ресурсам;
в) невозобновляемым природным ресурсам;
г) пополняющимся ресурсам.

5. Вырубка лесных массивов приводит к:

а) увеличению видового разнообразия птиц;
б) увеличению видового разнообразия млекопитающих;
в) уменьшению испарения;
г) нарушению кислородного режима.

6. Недостаток питьевой воды вызван, в первую очередь:

а) парниковым эффектом;
б) уменьшением объема грунтовых вод;
в) загрязнением водоемов;
г) засолением почв.

7. Парниковый эффект возникает в результате накопления в атмосфере:

а) угарного газа;
б) углекислого газа;
в) диоксида азота;
г) оксидов серы.

8. Важная роль атмосферы заключается в том, что она защищает живые организмы от:

а) резких колебаний температуры;
б) канцерогенных веществ;
в) радиоактивного загрязнения;
г) возбудителей заболеваний.

9. От жесткого ультрафиолетового излучения живые организмы защищают:

а) водяные пары;
б) облака;
в) озоновый слой;
г) азот.

10. Разрушение озонового слоя ведет к увеличению заболеваний:

а) желудочно-кишечного тракта;
б) сердечно-сосудистой системы;
в) кожи;
г) органов дыхания.

11. При разрушении люминесцентных ламп выделяются опасные для здоровья ионы:

а) ртути;
б) свинца;
в) кальция;
г) кобальта.

12. Самыми распространенными заболеваниями, которые возникают в результате ухудшения экологической обстановки, являются:

а) болезни опорно-двигательной системы;
б) инфекционные болезни;
в) сердечно-сосудистые и онкологические заболевания;
г) болезни пищеварительного тракта.

13. Вещества, вызывающие раковые заболевания, называют:

а) биогенными;
б) канцерогенными;
в) пирогенными;
д) абиогенными.

14. Наибольше количество веществ, загрязняющих биосферу, приходится на:

а) предприятия химической и угольной промышленности;
б) сельское хозяйство;
в) бытовую деятельность человека;
г) транспортные средства.

Ответы: 1 – в; 2 – б; 3 – б; 4 – в; 5 – г; 6 – в; 7 – б; 8 – а; 9 – в; 10 – в; 11 – а; 12 – в; 13 – б; 14 – а.

По материалам:

Прищепина И.А., Захарова Г.А. и др. Биология. Тестовые задания. – Мн.: Новое знание, 2005.

Глобальные изменения в атмосфере. Разрушение озонового слоя. Континентальные проблемы, причины вымирания массы тропических видов растений и животных. Парниковый эффект и возможные последствия изменения климата. Угроза для экосистем и биоразнообразия.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Проблемы парникового эффекта и разрушение озонового слоя

Влияние теплового режима поверхности Земли на состояние атмосферы. Защита планеты от ультрафиолетовой радиации озоновым экраном. Загрязнение атмосферы и разрушение озонового слоя как глобальные проблемы. Парниковый эффект, угроза глобального потепления.

реферат , добавлен 13.05.2013

Изменение климата – одна из глобальных экологических проблем

Воздействие человека на окружающую среду. Основы экологических проблем. Парниковый эффект (глобальное потепление климата): история, признаки, возможные экологические последствия и пути решения проблемы. Кислотные осадки. Разрушение озонового слоя.

курсовая работа , добавлен 15.02.2009

Экологические проблемы

Локальные, региональные и глобальные экологические проблемы современности. Потепление климата, его причины и последствия. Гибель и вырубка лесов. Экологическая проблема озонового слоя. Загрязнение воды отходами производства. Проблемы вымирания видов.

презентация , добавлен 19.02.2012

Экологические проблемы Республики Беларусь

Глобальные экологические проблемы: сокращение биоразнообразия Земли, деградация экосистем; потепление климата; разрушение озонового слоя; загрязнение атмосферы, воды, земель; увеличение населения Земли. Состояние окружающей среды в Республике Беларусь.

реферат , добавлен 24.10.2011

Парниковый эффект: причины и последствия

Сущность идеи о механизме парникового эффекта, основные его причины и возможные последствия, роль химических веществ. Глобальные климатические изменения и факторы влияния не ускорение или замедление процесса потепления, пять его возможных сценариев.

реферат , добавлен 27.01.2010

Глобальные экологические проблемы

Всемирные изменения окружающей среды под воздействием человека. Проблемы загрязнения атмосферы, почвы и вод Мирового океана, истощения озонового слоя, кислотных дождей, парникового эффекта. Основные условия сохранения равновесия и гармонии с природой.

презентация , добавлен 22.10.2015

Парниковый эффект

Антропогенное воздействие, техногенная нагрузка, рост населения как причины накопления углекислого газа в атмосфере. Парниковый эффект и глобальные экологические проблемы: снижение природно-ресурсного потенциала, устойчивости ландшафтов и геосистем.

курсовая работа , добавлен 02.12.2010

Глобальные проблемы экологии

Сущность глобальных экологических проблем. Разрушение природной среды. Загрязнение атмосферы, почвы, воды. Проблема озонового слоя, кислотных осадков. Причины парникового эффекта. Пути решения проблем перенаселения планеты, энергетических вопросов.

презентация , добавлен 05.11.2014

Экологические проблемы атмосферы.

Первая причина разрушения озонового слоя Земли —

Кислые осадки. Проблема озонового слоя в атмосфере. Понятие о парниковом эффекте

Локальный экологический кризис. Экологические проблемы атмосферы. Проблема озонового слоя. Понятие парниковый эффект. Кислотные дожди. Последствия кислотных осадков. Самоочищение атмосферы. Какие приоритеты считать основными? Что важнее экология или НТП.

реферат , добавлен 14.03.2007

Глобальные проблемы

Источники искусственных аэрозольных загрязнений воздуха: ТЭС, фабрики, заводы. Глобальные проблемы: разрушение природной среды, загрязнение атмосферы, почвы, воды. Актуальные проблемы озонового слоя и кислотных осадков. Решение экологических проблем.

презентация , добавлен 25.09.2011

Озо́новый слой - часть стратосферы на высоте от 12 до 50 км (в тропических широтах 25-30 км, в умеренных 20-25, в полярных 15-20), в которой под воздействием ультрафиолетового излучения Солнца молекулярный кислород) диссоциирует на атомы, которые затем соединяются с другими молекулами О2, образуя озон (О3). Относительно высокая концентрация озона (около 8 мл/м³) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения

Этапы разрушения озонового слоя:

1)Эмиссии: в результате деятельности человека, а также в результате природных процессов на Земле эмитируются (высвобождаются) газы, содержащие галогены (бром и хлор), ᴛ.ᴇ. вещества, разрушающие озоновый слой.

2)Аккумулирование (эмитированные газы, содержащие галогены, аккумулируются (накапливаются) в нижних атмосферных слоях, и под воздействием ветра, а также потоков воздуха перемещаются в регионы, которые не находятся в прямой близости с источниками такой эмиссии газов).

3)Перемещение (аккумулированные газы, содержащие галогены, с помощью потоков воздуха перемещаются в стратосферу).

4)Преобразование (бóльшая часть газов, содержащих галогены, под воздействием ультрафиолетового излучения Солнца в стратосфере преобразуется в легко реагирующие галогенные газы, благодаря чему в полярных регионах Земного шара разрушение озонового слоя происходит сравнительно активнее).

5)Химические реакции (легко реагирующие галогенные газы вызывают разрушение озона стратосферы; фактор, способствующий реакциям – полярные стратосферные облака).

6)Удаление (под воздействием воздушных потоков легко реагирующие галогенные газы возвращаются в тропосферу, где из-за присутствующей в облаках влажности и дождей разделяются, и таким образом из атмосферы полностью удаляются).

Причины разрушения ОС:

Во-первых ,- ϶ᴛᴏ запуски космических ракет. Сгорающее топливо ʼʼвыжигаетʼʼ в озоновом слое большие дыры. Когда-то предполагалось, что эти ʼʼдырыʼʼ затягиваются. Оказалось, нет. Οʜᴎ существуют довольно долго. Во-вторых , самолеты, летящие на высотах в 12-15 км. Выбрасываемый ими пар и другие вещества разрушают озон. Но, в то же время самолеты, летающие ниже 12 км, дают прибавку озона. В городах он – один из составляющих фотохимического смога. В-третьих – окислы азота. Их выбрасывают те же самолеты, но больше всœего их выделяется с поверхности почвы, особенно при разложении азотных удобрений.

Последствия:

Это негативно сказывается не только на всœех живых существах: людях, животных, растениях,тропических лесах, но и на предметах. К примеру, в случае если озоновый слой станет чересчур тонким, резина, используемая в хозяйстве, прослужит намного меньше. Водные организмы, обитающие в верхних слоях воды, прекратят свое существование. Окончательно погибнет фауна амазоских джунглей с питонами и попугаями. Рыбные уловы и сельскохозяйственные урожаи значительно уменьшатся. Несомненно, разрушение озонового слоя отразится и на людях. Человечество станет болеть в два раза больше, потому что иммунитет значительно ослабнет. Вероятность заболевания раком кожи и катарактой увеличится.

Ученые предполагают, что уменьшение озонового слоя на 1% приведет к активному распространению болезней. К примеру, случаи заболевания раком кожи увеличатся на 10 тысяч раз, а катарактой глаз — на 100 тысяч. Склонность человека к заболеваниям дыхательных путей и легких будет стремительно расти.

Учеными ведутся поиски путей восстановления озонового слоя.

Можно ли спасти озоновый слой от разрушения?

Вначале для этой цели предлагалось создание фабрик по производству озона, после чего доставлять оный на самолетах в атмосферу. Другим вариантом является создание аэростатов оснащенных лазерами, имеющих питание от солнечных батарей, которые будут использовать кислород для создания озона. Наиболее же реальным выходом из этой ситуации является сокращение вырубки лесов, и увеличением зелœеных насаждений.

49) Ядерным принято называть оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях делœения или синтеза. Оно является самым мощным видом оружия массового поражения.

Ядерные взрывы могут осуществляться на поверхности земли (воды), под землей (водой) или в воздухе на различной высоте. По этой причине различают следующие виды ядерных взрывов: наземный, подземный, подводный, воздушный и высотный. Наиболее характерными видами ядерных взрывов являются наземный и воздушный.

Поражающие факторы ядерного взрыва : ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

1)Ударная волна (УВ) - область резко сжатого воздуха, распространяющаяся во всœе стороны от центра взрыва со сверхзвуковой скоростью под высоким давлением

Воздействие УВ на людей должна быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Читайте также

  • — Разрушение озонового слоя

    В 70-х гг. ХХ в. появилось сообщение о региональных снижениях содержания озона в стратосфере. Особенно заметной стала сезонно пульсирующая озоновая дыра над Антарктидой площадью более 10 млн. км2, где содержание озона за 80-е гг. уменьшилось почти на 50%. Другие, “блуждающие”… [читать подробнее].

  • — РАЗРУШЕНИЕ ОЗОНОВОГО СЛОЯ

    В настоящее время отмечено ухудшение состояния озонового слоя и образование «озоновых дыр» (областей с пониженным содержанием озона) над полюсами Земли, что представляет экологическую опасность. Временные «дыры» возникают также над обширными районами вне полюсов (в… [читать подробнее].

  • Министерство образования республики Беларусь

    Учреждение образования

    «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

    Институт информационных технологий

    Специальность ИТиУТС

    КОНТРОЛЬНАЯ РАБОТА

    (контролируемая самостоятельная управляемая преподавателем

    работа студента)

    По курсу Основы экологии и энергосбережения

    Вариант №32

    Выполнила студентка 3 курса

    Группы № 182425

    № зачетной книжки: 182425-20

    ФИО: Гришко Екатерина Николаевна

    Адрес:231201 Гродненская обл.

    г.Островец,Ул.Володарского 17/12

    Тел.: +375336859213

    Минск, 2013

    1. Основные причины изменения климата Земли, разрушения озонового слоя, истощения природных ресурсов. Возможные последствия этих изменений.

    Научно-технический прогресс поставил перед человечеством ряд новых, весьма сложных проблем, с которыми оно до этого не сталкивалось вовсе, или проблемы не были столь масштабными. Среди них особое место занимают отношения между человеком и окружающей средой. В прошлом столетии на природу легла нагрузка, вызванная 4-кратным ростом численности населения и 18-кратным увеличением объема мирового производства.

    Ученые утверждают, что примерно с 60-70-х годов XX ст. изменения окружающей среды под воздействием человека стали всемирными, то есть затрагивающими все без исключения страны мира, поэтому их стали называть глобальными. Среди них наиболее актуальны:

    ♦ изменение климата Земли;

    ♦ разрушение озонового слоя;

    ♦ трансграничный перенос вредных примесей и загрязнение воздушного бассейна;

    ♦ истощение запасов пресной воды и загрязнение вод Мирового океана;

    ♦ оскудение биологического разнообразия;

    ♦ загрязнение земель, разрушение почвенного покрова и др

    Глобальное потепление. В результате изучения материалов метеорологических наблюдений во всех районах земного шара установлено, что климат подвержен определенным изменениям. Начавшееся в конце XIX в. потепление особенно усилилось в 20-30-х годах XX в., однако затем началось медленное похолодание, которое прекратилось в 60-е годы. Исследование геологами осадочных отложений земной коры показало, что в прошедшие эпохи происходили гораздо большие изменения климата. Поскольку эти изменения были обусловлены природными процессами, их называют естественными.

    Наряду с естественными факторами на глобальные климатические условия оказывает все возрастающее влияние хозяйственная деятельность человека. Это влияние начало проявляться тысячи лет назад, когда в связи с развитием земледелия в засушливых районах стало широко применяться искусственное орошение. Распространение земледелия в лесной зоне также приводило к некоторым изменениям климата, так как требовало вырубки лесов на больших пространствах. Однако изменения климата в основном ограничивались изменениями метеорологических условий в нижнем слое воздуха в тех районах, где осуществлялись значительные хозяйственные мероприятия.

    Во второй половине XX в. в связи с быстрым развитием промышленности и ростом энерговооруженности возникли перспективы изменения климата на всей планете. Современными научными исследованиями установлено, что влияние антропогенной деятельности на глобальный климат связано с действием нескольких факторов, из которых наибольшее значение имеют:

    ♦ увеличение количества атмосферного углекислого газа, а также некоторых других газов, поступающих в атмосферу в ходе хозяйственной деятельности, что усиливает в ней парниковый эффект;

    ♦ увеличение массы атмосферных аэрозолей;

    ♦ возрастание количества вырабатываемой в процессе хозяйственной деятельности тепловой энергии, поступающей в атмосферу.

    Наибольшее значение имеет первая из указанных причин антропогенного изменения климата. Рост концентрации углекислого газа в атмосфере определяется образованием СО2 в результате сжигания угля, нефти и других видов топлива. Кроме углекислого газа на парниковый эффект атмосферы может влиять увеличение примесей других газов - метана, оксида азота, озона, хлорфторуглеродов.

    В отличие от газов, составляющих малые примеси в атмосферном воздухе, поступление углекислого газа в атмосферу столь велико, что прекращение этого процесса в ближайшие десятилетия представляется технически неосуществимым. Кроме того, объемы потребления энергии в развивающемся мире начинают быстро расти.

    Постепенный рост количества СО2 в атмосфере уже оказывает заметное влияние на климат Земли, изменяя его в сторону потепления. Общая тенденция к повышению температуры воздуха, которая наблюдалась в XX ст., усиливается, что уже привело к повышению средней температуры воздуха на 0,5 oС.

    В результате четырехкратного увеличения во второй половине XX в. объема выбросов углеродистых соединений атмосфера Земли стала нагреваться возрастающими темпами. Согласно прогнозам ООН, в XXI ст. средняя температура повысится еще больше - на 1,2-3,5 "С, что вызовет таяние ледников и полярных льдов, поднимет уровень Мирового океана, создаст угрозу для сотен миллионов жителей прибрежных районов и полностью затопит некоторые острова, обусловит развитие и других негативных процессов, прежде всего - опустынивания земель.

    По мере усиления тенденций к потеплению погодные условия становятся более изменчивыми, а климатические стихийные бедствия - более разрушительными. Возрастает ущерб, наносимый стихийными бедствиями мировому хозяйству. Лишь за один 1998 г. он превысил ущерб, нанесенный стихийными бедствиями за все 80-е годы прошлого столетия, десятки тысяч людей погибли и около 25 млн. "экологических беженцев" вынуждены были покинуть свои дома.

    Разрушение озонового слоя Земли. Основное количество озона образуется в верхнем слое атмосферы - стратосфере, на высотах от 10 до 45 км. Слой озона защищает все живое на Земле от жесткого ультрафиолетового излучения Солнца. Поглощая это излучение, озон существенно влияет на распределение температуры в верхних слоях атмосферы, что в свою очередь оказывает влияние на климат.

    Общее количество озона и его распределение в атмосфере является результатом сложного и до конца не изученного динамического равновесия фотохимических и физических процессов, определяющих его образование, разрушение и перенос. Примерно с 70-х годов XX ст. наблюдается глобальное уменьшение количества стратосферного озона. Над некоторыми районами Антарктики в сентябре-октябре значения общего содержания озона уменьшаются на 60 %, в средних широтах обоих полушарий уменьшение составляет 4-5 % за десятилетие. Истощение озонового слоя планеты ведет к разрушению сложившегося биогенеза океана вследствие гибели планктона в экваториальной зоне, угнетению роста растений, резкому увеличению глазных и раковых заболеваний, а также болезней, связанных с ослаблением иммунной системы человека и животных, повышению окислительной способности атмосферы, коррозии металлов и т.д.

    Ф. Роулэнд и М. Молино (Беркли) обосновали принятую в настоящее время мировой общественностью точку зрения, что хлорфторуглероды (ХФУ) - инертные в обычных условиях вещества, - попадая в стратосферу и разрушаясь под действием ультрафиолетового излучения Солнца, выделяют свободный хлор, участвующий в каталитических реакциях разрушения озона. ХФУ широко используются в качестве газов-наполнителей в аэрозольных упаковках, при производстве мягких и твердых пенистых веществ, в качестве хладонов в холодильных установках и кондиционерах, в качестве растворителей - в промышленном производстве и т.п. Попадая в атмосферу, одна молекула такого инертного газа способна разрушить до 1000 молекул озона, а некоторые ХФУ могут сохраняться в атмосфере более 100 лет.

    Истощение запасов пресной воды. За период с 1900 г. по 1995 г. потребление пресной воды в мире увеличилось в шесть раз, что более чем в два раза превышает темпы прироста населения. Уже сейчас почти одна треть мирового населения проживает в странах, где потребляемый объем воды на 10 % превышает общий объем имеющихся запасов. Если нынешние тенденции сохранятся, то к 2025 г. в условиях дефицита будут проживать каждые два из трех жителей Земли.

    Основным источником обеспечения человечества пресной водой являются в целом активно возобновляемые поверхностные воды, которые составляют около 39 000 км3 в год. Еще в 70-е годы эти огромные ежегодно возобновляемые ресурсы пресной воды обеспечивали на одного жителя земного шара в среднем около 11 тыс. м3, в 80-е годы обеспеченность водными ресурсами на душу населения снизилась до 8,7 тыс. м3/год, а к концу XX ст. - до 6,5 тыс. м3/год. С учетом прогноза роста численности населения Земли к 2050 г. (до 9 млрд. чел.) обеспеченность водой упадет еще до 4,3 тыс. м3/год. Человечество настораживает довольно резкое (почти в 2 раза) падение обеспеченности пресной водой в конце XX ст.

    Вместе с тем, необходимо учитывать, что приведенные средние данные носят слишком обобщенный характер. Неравномерность распределения населения и водных ресурсов по земному шару приводит к тому, что в некоторых странах ежегодная обеспеченность населения ресурсами пресной воды снижается до 1000-2000 м3/год (страны Южной Африки) или повышается до 100 тыс. м3/год (Новая Зеландия). В таких обильных водой и малонаселенных районах, как Аляска, Гвиана, обеспеченность водными ресурсами на душу населения даже превышает 2 млн. м3. Сказываются также колебания речного стока во времени, когда в некоторых странах в маловодные годы ресурсы пресных вод уменьшаются в 3-4 раза; в отдельных районах Северной и Восточной Африки не бывает дождей в течение нескольких лет, и реки пересыхают.

    Подземные воды обеспечивают потребности одной трети населения Земли. Особую озабоченность человечества вызывает их нерациональное использование и методы эксплуатации. Добыча подземных вод во многих регионах земного шара ведется в таких объемах, которые значительно превышают способность природы к их возобновлению. Это широко распространено на Аравийском полуострове, в Индии, Китае, Мексике, странах СНГ и США. Отмечается падение уровня подземных вод на 1-3 м в год.

    В некоторых регионах мира происходит острейшая конкурентная борьба между государствами за водные ресурсы для орошения и производства электроэнергии, которая, по всей вероятности, еще более обострится с ростом численности населения. Сегодня от нехватки воды наиболее сильно страдают Ближний Восток и Северная Африка, однако к середине XXI в. к ним присоединятся и страны Африки к югу от Сахары, поскольку за это время их население увеличится в два или даже в три раза.

    Разрушение почвенного покрова Земли. Проблема земельных ресурсов в настоящее время стала одной из крупнейших глобальных проблем не только из-за ограниченности земельного фонда планеты, но и потому, что естественная способность почвенного покрова производить биологическую продукцию ежегодно уменьшается как относительно (в расчете на душу прогрессивно возрастающего мирового населения), так и абсолютно (за счет увеличения потерь и деградации почвы в результате деятельности самого человека).

    Человечество за свою историю безвозвратно потеряло больше плодородных земель, чем их распахивается во всем мире (более 1,5 млрд. га), превратив когда-то продуктивные пахотные земли в пустыни, пустоши, болота, кустарниковые заросли, бедленды, овраги. Многие безжизненные пустыни мира - это результат деятельности человека. Процесс этих безвозвратных потерь продолжается и сейчас. По самым оптимистическим подсчетам специалистов ООН, почти 2 млрд. га земли подвержены вызываемой деятельностью человека деградации, что ставит под угрозу существование почти 1 млрд.

    1.1. Разрушение озонового слоя

    человек. Основные причины этого - засоление почв в результате орошения, а также эрозия, вызванная чрезмерным выпасом, обезлесением, опустыниванием земель.

    Эрозия почвы известна человеку давно, но особенное развитие она получила в современную эпоху в связи с интенсификацией земледелия, с многократным усилением нагрузки на почвенный покров.

    Вторым по значению деградационным процессом, также широко распространенным во всем мире, является сложный комплекс различных неблагоприятных вторичных последствий орошаемого земледелия, среди которых особенно выделяются вторичное засоление, заболачивание почв. Увеличение в пахотном слое орошаемой почвы содержания солей до 1 % снижает урожай на одну треть, а при содержании в 2-3 % урожай погибает полностью.

    Истощение пахотных и пастбищных почв, падение их плодородия происходит во всем мире в результате нерационального интенсивного их использования. Есть и другие деградационные процессы: заболачивание почв в районах достаточного или избыточного атмосферного увлажнения, уплотнение почв, техногенное их загрязнение. В мире каждый год дополнительно 20 млн. га сельскохозяйственных угодий становятся непригодными для возделывания сельскохозяйственных культур вследствие деградации почв или наступления городов. В то же время ожидается, что в течение следующих 30-ти лет спрос на продовольствие в развивающихся странах удвоится. Новые земли могут и будут осваиваться, однако это будет в основном происходить в зоне рискованного земледелия, где почвы в еще большей степени подвержены деградации.

    Страницы:123следующая →

    Зачем нужен озоновый слой?

    В 1912 году французские физики Шарль Фабри и Анри Буиссон открыли существование озонового слоя. Учёные доказали, что в отдалённых слоях атмосферы сконцентрированы молекулы озона, которые задерживают короткие волны солнечного спектра и практически не пропускают на Землю ультрафиолетовое излучение.

    Дальнейшее изучение соединений озона в атмосфере показало, что озоновый слой также удерживает и солнечное тепло, что позволяет сохранить на нашей планете пригодную для жизни температуру. Более того, соединения озон способен превращать некоторые вредные химические вещества (например, метан, оксиды азота) в безвредные для окружающей среды соединения.

    Защитная функция озонового слоя
    по силе сравнима с металлическим щитом

    Хотя количество соединений озона в атмосфере относительно невелико, защитная функция так называемого «озонового слоя» по силе сравнима с металлическим щитом. Если бы озонового слоя не существовало, Земля подвергалась бы постоянной солнечной радиации и другим губительным воздействиям из космоса. Есть основания полагать, что без существования озонового слоя, на Земле так и не возникла бы жизнь в том виде, в котором мы наблюдаем её сейчас.

    Как «работает» озоновый слой?

    Соединения озона в атмосфере в большинстве сконцентрированы в стратосфере – на расстоянии от 10 до 50 км от Земли. Всего в атмосфере находится около трёх тысяч тонн молекул озона. В масштабах объёма всего атмосферного воздуха это совсем немного. Если собрать все молекулы озона вместе и равномерно распределить их вокруг Земли, толщина такого слоя будет всего 3-5 миллиметра. А если представить, что все молекулы озона можно сконцентрировать в одном месте, то мы получим газообразный шар диаметром всего 14 км. Для сравнения: такой шар, вмещающий весь атмосферный воздух, имел бы диаметр 2001 км.

    Познакомиться с озоновым слоем «поближе» можно через просмотр наглядного видеоролика «Бесценный газ. Сколько озона в атмосфере?» (на белорусском языке).

    Даже относительно небольшое количество озона в атмосфере творит чудеса. Кроме защиты нашей планеты от опасного солнечного излучения, озоновый слой делает Землю уникальной планетой, создавая так называемую температурную инверсию. Нормальным ходом температуры считается понижение температуры атмосферы с удалением от Земли: чем выше - тем холоднее. Однако озоновый слой создаёт барьер, который нарушает нормальный ход температуры. Там, где располагается озоновый слой, температура вдруг опять начинает повышаться.

    Содержание озонового слоя в атмосфере и температурная инверсия

    Температурная инверсия, создаваемая озоновым слоем, делит атмосферу на две части – тропосферу и всё, что выше. Благодаря этому разделению, в тропосфере могут формироваться погодные условия, пригодные для жизни. Другим планетам повезло меньше (ну, или больше) – там нет озонового слоя, а, следовательно, и температурной инверсии, которая бы создала пригодные условия для жизни человека.

    Почему озон разрушается?

    К 70-ым годам XXвека учёные всего мира стали замечать уменьшение коцентрации молекул озона в атмосфере. Этот факт занимал умы множества физиков и химиков по всему миру, учёные выдвигали самые разные гипотезы о причинах таких изменений. Решающим стало изучение химиками Франком Шервудом Роуландом и Марио Молиной воздействия хлорфторуглеродов (ХФУ) на атмосферу Земли. В 1973 году химики предположили, что молекулы хлора, которые появляются в резуальтате распада ХФУ под ультрафиолетовыми лучами, могут вызывать разрушение больших количество озона в атмосфере.

    Одна молекула хлора способна разрушить до 200 тысяч молекул озона

    Выводы американских учёных были подкреплены аналогичными работами учёных Пауля Джозефа Крутцена и Харольда Джонстоуна. С тех пор такая гипотеза о таком явлении, как разрушение озонового слоя , является общепринятой в научном мире.

    Так выглядит схема разрушения молекулы озона под воздействием хлорфторуглерода. Под действием ультрафиолета высвобождается атомарный хлор, который разрушает связи внутри молекулы озона

    Открытие Молины и Рауланда позволило не только объяснить процесс истончения озонового слоя, но и сделать важный вывод о том, что разрушение озонового слоя происходит под воздействием жизнедеятельности человека. Ведь основными “поставщиками” хлорфторуглерода в атмосферу являются фроены - те, вещества, которые используются для создания искусственного холода в наших холодильниках, кондиционерах и прочих бытовых и промышленных приборах. Опасные для озона вещества также содержатся в некоторых аэрозолях, огнетушителях, изоляционных плитах и растворителях.

    Впоследствии в 1995 году учёным Молине, Роуланду и Крутцену была присуждена Нобелевская премия по химии за работу над проблемами разрушения озона.

    Для того, чтобы уберечь озоновый слой от разрушения, экологи советуют придерживаться нескольких простых советов в быту.

    • Не разбирайте и не ремонтируйте самостоятельно старые холодильники - в окружающую среду могут попасть озоноразрушающие фреоны.
    • Сдавайте старые холодильники и кондиционеры на переработку.
    • Выбирайте технику (особенно холодильники и кондиционеры) без содержания озоноразрушающих веществ. Об этом должно быть указание на упаковке.
    • Выбирайте аэрозоли, которые безопасные для озонового слоя. Они обычно имеют маркировку «безвредно для озона», “ozone friendly”, “ozone free”.

    Примеры “озонобезопасной” маркировки

    Существуют ли озоновые дыры?

    Как объясняет научный сотрудник Национального центра мониторинга озоносферы при Белорусском государственном университете, исследователь стратосферного озона в Антарктиде Илья Бручковский, в научном мире понятия «озоновая дыра» не существует, но есть «озоновая аномалия».

    По сути, озоновые аномалии представляют собой участки очень низкого содержания озонового слоя в атмосфере. Так, если нормальное содержание озона в атмосфере составляет 300 единиц Добсона, то внутри озоновой аномалии наблюдается около 180 единиц. И действительно одна такая аномалия существует и находится над Антарктидой.

    Динамика содержания озона в атмосфере в области озоновой аномалии над Антарктикой с 1957 по 2001 годы.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Введение

    Основная часть

    1. Понятие «Озоновый слой»

    4. Охрана озонового слоя

    Заключение

    Литература

    Введение

    XX век принес человечеству немало благ, связанных с бурным развитием научно- технического прогресса, и в то же время поставил жизнь на Земле на грань экологической катастрофы. Рост населения, интенсификация добычи и выбросов, загрязняющих Землю, приводят к коренным изменениям в природе и отражаются на самом существовании человека. Часть из таких изменений чрезвычайно сильна и настолько широко распространена, что возникают глобальные экологические проблемы.

    Имеются серьезные проблемы загрязнения (атмосферы, вод, почв), кислотных дождей, радиационного поражения территории, а также утраты отдельных видов растений и живых организмов, оскудения биоресурсов, обезлесения и опустынивания территорий.

    Проблемы возникают в результате такого взаимодействия природы и человека, при котором антропогенная нагрузка на территорию (ее определяют через техногенную нагрузку и плотность населения) превышает экологические возможности этой территории, обусловленные главным образом ее природно-ресурсным потенциалом и общей устойчивостью природных ландшафтов (комплексов, геосистем) к антропогенным воздействиям.

    Основная часть

    1. Понятие «Озоновый слой»

    Озоновый слой -- часть стратосферы на высоте от 12 до 50 км (в тропических широтах 25--30 км, в умеренных 20--25, в полярных 15--20), в которой под воздействием ультрафиолетового излучения Солнца молекулярный кислород (О 2) диссоциирует на атомы, которые затем соединяются с другими молекулами О 2 , образуя озон (О 3). Относительно высокая концентрация озона (около 8 мл/мі) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения.

    Наибольшая плотность озона встречается на высоте около 20--25 км, наибольшая часть в общем объёме -- на высоте 40 км. Если бы можно было извлечь весь озон, находящийся в атмосфере, и сжать под нормальным давлением, то в результате вышел бы слой, покрывающий поверхность Земли толщиной всего 3 мм. Для сравнения, вся сжатая под нормальным давлением атмосфера составляла бы слой в 8 км.

    Если бы не озоновый слой, то жизнь не смогла бы вообще выбраться из океанов и высокоразвитые формы жизни типа млекопитающих, включая человека, не возникли бы.

    2. Причины разрушения озонового слоя

    2.1 Природные причины разрушения озонового слоя

    Природные источники включают: крупные пожары и определенные морские биотопы (поставляющие определенные хлорсодержащие соединения, устойчиво переносящие "путешествие" к стратосфере); крупные извержения вулканов, косвенно влияющие на истощение озона (в процессе извержения выбрасывается большое количество мелких твердых частиц и аэрозолей, которые повышают эффективность разрушительного воздействия хлора на озон). Однако аэрозоли способствуют разрушению озонового слоя только тогда, когда в нем присутствуют хлорфторуглероды. Разрушение озонового слоя связывают с глобальным изменением климата на нашей планете. Последствия этого явления, названного «парниковым эффектом», крайне сложно прогнозировать. Согласно пессимистическим прогнозам ученых ожидаются изменения количества осадков, перераспределение их между зимой и летом; говорят о перспективе превращения плодородных регионов в засушливые пустыни, повышении уровня Мирового океана в результате таяния полярных льдов.

    2.2 Антропогенные причины разрушения озонового слоя

    Нарастание концентрации хлорфторуглеродов (фреонов), диоксидов азота, метана и других углеводородов, поступающих в дополнение к естественным составляющим атмосферы из техногенных источников, при сжигании углеводородного сырья на транспорте способно уменьшить концентрацию озона.

    Главную опасность для атмосферного озона составляет группа химических веществ, объединенных термином «хлорфторуглероды» (ХФУ), называемых также фреонами, которые впервые были получены в 1928 г. В течение полувека эти вещества считались чудо - веществами. Они нетоксичны, инертны, чрезвычайно стабильны, не горят, не растворяются в воде, удобны в производстве и хранении. И поэтому сфера применения ХФУ динамично расширялась. В массовых масштабах их начали использовать в качестве хладагентов при изготовлении холодильников. Затем они стали применяться в системах кондиционирования воздуха, а с началом всемирного аэрозольного бума получили самое широкое распространение. Фреоны оказались очень эффективны при промывке деталей в электронной промышленности, а также нашли широкое применение в производстве пенополиуретанов. Пик их мирового производства пришелся на конец 80-х гг. и составил около 1,2-1,4 млн. т в год, из которых на долю США приходилось около 35 %.

    Предполагают, что попадая в верхние слои атмосферы, эти инертные у поверхности Земли вещества становятся активными. Под воздействием ультрафиолетового излучения химические связи в их молекулах нарушаются. В результате выделяется хлор, который при столкновении с молекулой озона превращает его в кислород. Хлор же, соединившись временно с кислородом, опять оказывается свободным и способным к новым химическим реакциям. Его активности и агрессивности хватает на то, чтобы разрушить десятки тысяч молекул озона.

    Суммарное производство фреонов, используемых при производстве пенопластов, в холодильной, парфюмерной промышленности, бытовых устройствах (аэрозольные баллончики) в 1988 г. достигло 1 млн. т.

    Эти высокоинертные вещества абсолютно безвредны в приземных слоях атмосферы. При медленной диффузии в стратосферу они достигают области распространения фотонов высоких энергий и при фотохимических превращениях способны разлагаться с выделением атомарного хлора. Один атом Сl способен разрушить десятки и сотни молекул O3. Хлор интенсивно реагирует с озоном, действуя как катализатор.

    Аналогично действует и оксид азота NО, техногенное поступление которого в атмосферу связано с реакциями горения углеводородного топлива. Главными поставщиками NО в атмосферу являются двигатели ракет, самолетов и автомобилей. С учетом сложившегося в настоящее время газового состава стратосферы в порядке оценки можно говорить, что около 70 % озона разрушается по азотному циклу, 17 - по кислородному, 10 - по водородному, около 2 % по хлорному и около 1-2 % поступает в тропосферу. Вклад транспорта в разрушение озоносферы чрезвычайно велик в связи с выбросом в атмосферу оксидов азота.

    Активную роль в образовании и разрушении озона играют тяжелые металлы (медь, железо, марганец). Поэтому общий баланс озона в стратосфере регулируется сложным комплексом процессов, в которых значительными являются около 100 химических и фотохимических реакций.

    В этом балансе азот, хлор, кислород, водород и другие компоненты участвуют как бы в виде катализаторов, не меняя своего «содержания», поэтому процессы, приводящие к их накоплению в стратосфере или удалению из нее, существенно сказываются на содержании озона.

    В связи с этим попадание в верхние слои атмосферы даже относительно небольших количеств таких веществ может устойчиво и долгосрочно влиять на установившийся баланс, связанный с образованием и разрушением озона.

    Метан CH 4 , как и оксид азота, относится к естественным компонентам атмосферы, также способен реагировать с озоном. Его техногенное поступление в результате принудительной вентиляции шахт, потерь при добыче нефти и газа, заболачивании низменных ландшафтов принимает все большие масштабы. Поэтому зафиксированное уменьшение концентрации озона не без оснований связывают с антропогенной деятельностью - техногенезом.

    Основные запасы планетарного метана сосредоточены в форме твердых газогидратов, локализованных в прибрежных зонах полярных акваторий. Переход твердых гидратов в газ минует жидкую фазу. Характерно, что с 1972 до 1985 г. с помощью спутникового слежения (Nimbus-7) выявлено более 200 высоконапорных метановых струй на высотах до 22 км, т. е. в озоноэффективных областях атмосферы. Метан способствует не только разрушению озона, но и повышению температуры приземного воздуха («парниковый эффект»). В свою очередь, такое потепление может вызвать «взрыв» газогидратных панцирей и рост концентрации метана в атмосфере.

    Огромное влияние на снижение содержания озона оказывают запуски ракет и кораблей многоразового использования типа «Шаттл» и «Энергия». Один старт «Шаттла» - это потеря 10 млн. т озона. Метеорологи и геофизики давно обращают внимание космических корпораций на этот факт. Но слишком заманчиво освоение космоса с его невиданными типами энергии, а причины снижения концентрации озона в озоносфере до сих пор до конца не обоснованы.

    Кроме того, предполагается, что первый массивный удар по озоновому слою был нанесен высотными ядерными взрывами 1958-1962 гг. Хотя и по другим политическим причинам, но в настоящее время от продолжения таких ядерных взрывов благоразумно воздержались. По оценкам специалистов, после «залечивания» озоновой дыры в результате гелиогенерации озона в течение 22-летнего солнечного цикла, в период спокойного Солнца все равно будет наблюдаться снижение концентрации озона. Более 60 % техногенного вклада в это снижение дают запуски ракет, и это может привести к расширению озонной дыры до средних широт.

    3. Последствия разрушения озонового слоя

    Разрушение озонового слоя приводит к проникновению чрезмерного количества ультрафиолета-В к поверхности земли, что может иметь следующие последствия:

    * в водных экосистемах ультрафиолет-В тормозит развитие фитопланктона (являющегося основой пищевых цепей в океане) и вызывает нарушения на ранних стадиях развития у рыб, креветок, крабов, земноводных и других морских животных;

    * ультрафиолет-В способен негативно влиять на рост наземных растений, хотя некоторые из них способны адаптироваться к повышенному уровню радиации. К ультрафиолетовым лучам очень чувствительны хвойные деревья и злаки, овощи, бахчевые культуры, сахарный тростник и бобовые. Данные экспериментов свидетельствуют о том, что рост некоторых растений сдерживается существующим уровнем радиации.

    * ультрафиолет-В влияет на химические процессы в нижних слоях атмосферы и на концентрацию тропосферного озона в загрязненных регионах (вероятность фотохимического смога увеличивается при повышенных уровнях ультрафиолета-В), а также на время жизни и концентрацию определенных соединений, включая некоторые парниковые газы. Более того, ХФУ и потенциальные вещества-заменители способны поглощать коротковолновую инфракрасную радиацию с поверхности Земли, что усугубляет парниковый эффект.

    4. Охрана озонового слоя

    озоновый слой загрязнение разрушение

    Венская конвенция об охране озонового слоя -- многостороннее экологическое соглашение. Оно было согласовано на Венской Конференции 1985 года и вступило в силу с 1988 года. Ратифицировано 197 государствами (все члены ООН и Европейский союз).

    Действует как основа для международных усилий по защите озонового слоя. Однако, конвенция не включает юридически обязательные цели сокращения использования хлорфторуглеродов, главных химических веществ, вызывающих истощение озонового слоя. Они изложены в сопровождающем Монреальском Протоколе.

    Монреальский протокол по веществам, разрушающим озоновый слой -- международный протокол к Венской конвенции об охране озонового слоя 1985 года, разработанный с целью защиты озонового слоя с помощью снятия с производства некоторых химических веществ, которые разрушают озоновый слой. Протокол был подготовлен к подписанию 16 сентября 1987 года и вступил в силу 1 января 1989 года. После этого последовала первая встреча в Хельсинки в мае 1989 года. С тех пор протокол подвергался пересмотру семь раз: в 1990 (Лондон), 1991 (Найроби), 1992 (Копенгаген), 1993 (Бангкок), 1995 (Вена), 1997 (Монреаль) и 1999 (Пекин). Если страны, подписавшие протокол, будут его придерживаться и в будущем, то можно надеяться, что озоновый слой восстановится к 2050 году. Генеральный секретарь ООН (1997--2006) Кофи Аннан сказал, что «возможно, единственным очень успешным международным соглашением можно считать Монреальский протокол».

    СССР подписал Монреальский протокол в 1987 году. В 1991 году Россия, Украина и Белоруссия подтвердили свою правопреемственность этому решению.

    Международный день охраны озонового слоя -- 16 сентября. Ежегодный Международный день охраны озонового слоя провозглашён Генеральной ассамблеей ООН в 1994 году в специальной резолюции.

    Дата Международного дня выбрана в память о дне подписания Монреальского протокола по веществам, разрушающим озоновый слой.

    Государствам, членам ООН, было предложено посвятить этот Международный день пропаганде конкретной деятельности в соответствии с задачами и целями Монреальского протокола.

    Генеральный секретарь ООН Кофи Аннан в своём послании в 2006 году отметил огромный прогресс в усилиях по сохранению озонового слоя, сказал об оптимистических прогнозах, предсказывающих восстановление озонового слоя.

    Многие страны мира разрабатывают и осуществляют мероприятия по выполнению Венских конвенций об охране озонового слоя и Монреальского протокола по веществам, разрушающим озоновый слой.

    В чем заключается конкретность мер по сохранению озонового слоя над Землей?

    Согласно международным соглашениям промышленно развитые страны полностью должны прекратить производство фреонов и тетрахлорида углерода, которые также разрушают озон.

    Вторым этапом должен стать запрет на производство метилбромидов и гидрофреонов. Уровень производства первых в промышленно развитых странах с 1996 г. заморожен, гидрофреоны полностью снимаются с производства к 2030 г. Однако развивающиеся страны до сих пор не взяли на себя обязательств по контролю над этими химическими веществами.

    В последнее время появилось несколько проектов по восстановлению озонового слоя. Так, восстановить озоновый слой над Антарктидой при помощи запуска специальных воздушных шаров с установками для производства озона надеется английская группа защитников окружающей среды, которая называется «Помогите озону». Один из авторов этого проекта заявил, что озонаторы, работающие от солнечных батарей, будут установлены на сотнях шаров, наполненных водородом или гелием.

    Несколько лет назад была разработана технология замены фреона специально подготовленным пропаном. Ныне промышленность уже на треть сократила выпуск аэрозолей с использованием фреонов. В странах ЕЭС намечено полное прекращение использования фреонов на заводах бытовой химии и т. д.

    Заключение

    Возможности воздействия человека на природу постоянно растут и уже достигли такого уровня, когда возможно нанести биосфере непоправимый ущерб. Уже не в первый раз вещество, которое долгое время считалось совершенно безобидным, оказывается на самом деле крайне опасным. Лет двадцать назад вряд ли кто-нибудь мог предположить что обычный аэрозольный баллончик может представлять серьезную угрозу для планеты в целом. К несчастью, далеко не всегда удается вовремя предсказать, как то или иное соединение будет воздействовать на биосферу. Однако в случае с ХФУ такая возможность была: все химические реакции, описывающие процесс разрушения озона ХФУ крайне просты и известны довольно давно. Но даже после того, как проблема ХФУ была в 1974 г. сформулирована, единственной страной, принявшей какие-либо меры по сокращению производства ХФУ были США и меры эти были совершенно недостаточны.

    Потребовалась достаточно серьезная демонстрация опасности ХФУ для того, чтобы были приняты серьезные меры в мировом масштабе. Следует заметить, что даже после обнаружения озонной дыры, ратифицирование Монреальской конвенции одно время находилось под угрозой. Быть может, проблема ХФУ научит с большим вниманием и опаской относиться ко всем веществам, попадающим в биосферу в результате деятельности человечества.

    Литература

    1. И.К. Ларин Химия озонового слоя и жизнь на Земле // Химия и жизнь. XXI век. 2000. № 7. С. 10-15.

    2. Озоновый слой. https://ru.wikipedia.org/wiki/Озоновый_слой.

    3. Международный день охраны озонового слоя. https://ru.wikipedia.org/wiki/Международный_день_охраны_озонового_слоя.

    4. Монреальский протокол. https://ru.wikipedia.org/wiki/Монреальский_протокол.

    5. Венская конвенция об охране озонового слоя. https://ru.wikipedia.org/wiki/Венская_конвенция_об_охране_озонового_слоя.

    6. Разрушение озонового слоя. http://edu.dvgups.ru/METDOC/ENF/BGD/MONIT_SR_OBIT/METOD/USH_POSOB/frame/1_4.htm#1.4.1._Факторы_разрушения_озона.

    7. Охрана окружающей среды. http://www.ecologyman.ru/95/28.htm.

    Размещено на Allbest.ru

    Подобные документы

      Из истории. Местоположение и функции озонового слоя. Причины ослабления озонового щита. Озон и климат в стратосфере. Разрушение озонового слоя земли хлорфторуглеводородами. Что было сделано в области защиты озонового слоя. Факты говорят сами за себя.

      реферат , добавлен 14.03.2007

      Защита климата и озонового слоя атмосферы как одна из наиболее острых глобальных экологических проблем современности. Суть и причины возникновения парникового эффекта. Состояние озонового слоя над Россией, уменьшение содержания озона ("озоновая дыра").

      реферат , добавлен 31.10.2013

      Озоновая дыра как локальное падение озонового слоя. Роль озонового слоя в атмосфере Земли. Фреоны - основные разрушители озона. Методы восстановления озонового слоя. Кислотные дожди: сущность, причины появления и негативное воздействие на природу.

      презентация , добавлен 14.03.2011

      Роль озона и озонового экрана для жизни планеты. Экологические проблемы атмосферы. Озоноразрушающие вещества и механизм их действия. Влияние уменьшения озонового слоя на жизнь на Земле. Меры, принимаемые по его защите. Роль ионизаторов в жизни человека.

      реферат , добавлен 04.02.2014

      Озоновые дыры и причины их возникновения. Источники разрушения озонового слоя. Озоновая дыра над Антарктикой. Мероприятия по защите озонового слоя. Правило оптимальной компонентной дополнительности. Закон Н.Ф. Реймерса о разрушении иерархии экосистем.

      контрольная работа , добавлен 19.07.2010

      Теории образования озоновых дыр. Спектр озонового слоя над Антарктидой. Схема реакции галогенов в стратосфере, включающая их реакции с озоном. Принятие мер по ограничению выбросов хлор- и бромсодержащих фреонов. Последствия разрушения озонового слоя.

      презентация , добавлен 14.05.2014

      Влияние теплового режима поверхности Земли на состояние атмосферы. Защита планеты от ультрафиолетовой радиации озоновым экраном. Загрязнение атмосферы и разрушение озонового слоя как глобальные проблемы. Парниковый эффект, угроза глобального потепления.

      реферат , добавлен 13.05.2013

      Изучение химических особенностей, реакций синтеза и распада озона. Характеристика основных соединений, приводящих к изменению текущего состояния озонового слоя. Влияние ультрафиолета на человека. Международные соглашения в области охраны озонового слоя.

      реферат , добавлен 24.01.2013

      Понятие и местоположение озонового слоя, его функциональные особенности и оценка значения для биосферы Земли. Структура и элементы озонового слоя, причины его ослабления в последние десятилетия, негативные последствия данного процесса и его замедление.

      презентация , добавлен 24.02.2013

      Экологический аспект появления и развития человечества. Глобальные проблемы современности. Виды антропогенных изменений в биосфере. Факторы разрушения озонового слоя. Радиоактивное заражение почвы. Сущность и принципы охраны окружающей природной среды.

    Важнейшей составной частью атмосферы, влияющей на климат и защищает все живое на Земле от излучения Солнца, является озоносфера. Основная масса озона находится на высотах от 10 до50 км, А его максимум - на 18 -26 км. Всего в стратосфере содержится 3,3 триллиона тон озона. В слое озоносферы озон находится в очень разреженном состоянии.

    Роль озона в сохранении биологической жизни на Земле исключительно велика. Молекулы озона поглощают жесткое ультрафиолетовое излучение Солнца именно в той спектральной области, является наиболее разрушительной для биологических систем. Органические молекулы разрушаются ультрафиолетовым (УФ) излучением. Это касается также и молекул ДНК, отвечающие, как известно, за передачу наследственных признаков. Озоновый слой, как щит, не только предохраняет живом веществе от прямого разрушения, но и обеспечивает ход эволюции.

    Рис. 1 Озон в атмосфере Земли

    Если толщина озона уменьшилось, это нанесло бы непоправимый вред всем живым организмам. Твердый ультрафиолет плохо поглощается водой и поэтому представляет большую опасность для морских экосистем. Эксперименты показали, что планктон, обитающий в приповерхностном слое, при увеличении интенсивности жесткого УФ может серьезно пострадать и даже погибнуть полностью. Планктон находится в основании пищевых цепей практически всех морских экосистем, поэтому без преувеличения можно сказать, что практически всю жизнь в приповерхностных слоях морей и океанов может исчезнуть. Растения менее чувствительны к жесткому УФ, но при увеличении дозы могут пострадать и они. Полное исчезновение озонового слоя, несомненно, означало бы и исчезновение высших форм жизни. Что касается людей, то сейчас подсчитано, что даже незначительное снижение толщины слоя озона может увеличить заболеваемость раком кожи. Однако человечество легко найдет способ защититься от жесткого УФ-излучения но при этом рискует умереть от голода. Другое распределение озона по высоте существенно повлияет и на климат, так как изменится характер поглощения УФ-излучения озоном, а следовательно, и температура стратосферы.

    Проблема озона, как одного из малых газовых компонентов атмосферы, ранее представляла интерес только для небольшого круга ученых, в настоящее время приобрела глобальное значение. Такая резкая перемена объясняется открытием того факта, что нормальный содержимое озона в атмосфере находится под угрозой в результате хозяйственной деятельности человека.

    Если бы все количество озона собрать при нормальном давлении 760 ммрт. ст. и температуры 273,15 К, то толщина этого слоя составила бы всего 2,5 -3 мм. Озон представляет собой едкий, немного голубоватый газ. Его молекула состоит из трех атомов кислорода (O 3), так что озон является «химическим родственником» более стабильной и богатой в атмосфере вещества,необходимого для дыхания человека, что составляет ться из двух атомов кислорода (О 2).

    Свойства озона:

    Способность поглощать биологически опасное ультрафиолетовое излучение Солнца.

    Озон - сильнейший окислитель (попросту говоря - яд), поэтому приземный озон опасен.

    Поглощение инфракрасное излучение земной поверхности.

    Способность прямым и косвенным образом влиять на химический состав атмосферы.

    Поскольку механизм создания молекул озона находится в балансе с механизмом их разрушения, то средняя количество озона в стратосфере ученые считают величиной сравнительно постоянной с момента образования современной атмосферы Земли.

    В отличие от других атмосферных составляющих озон появился в атмосфере исключительно химическим путем и является самым молодым атмосферным компонентом. С экологической точки зрения, ценной свойством озона является его способность поглощать биологически опасное ультрафиолетовое излучение Солнца; в то время как химическая соединение озон является сильнейшим окислителем (попросту ядом), способным при непосредственном контакте отравить ту же флору и фауну, что он защищает в качестве стратосферного озонового слоя. Кроме этого, озон является эффективным парниковым газом. И, наконец, озон влияет на малые активные составляющие атмосферы, а через них - и на стабильные компоненты, которые, как и сам озон поглощают и ультрафиолетовое и инфракрасное излучение. Тем самым озон делает не только прямой, но и косвенное влияние на парниковый эффект и уровень ультрафиолетового излучения на поверхности Земли.

    Практически единственным источником озона в атмосфере является фотодиссоциация молекулярного кислорода на атомы с последующим быстрым усыпления атома к молекуле O 2 с образованием молекулы озона:

    O 2 + H N = O + O (1)

    O + O 2 + M = O 3 + M (2)

    (Здесь М - любая молекула воздуха).

    Этот процесс на высотах более 30 км, Поскольку ниже этой высоты коротковолновое солнечное излучение не проникает. В результате довольно высоко в атмосфере появляются молекулы озона и атомы кислорода.

    Гибель атмосферного озона происходит в результате следующих процессов:

    O 3 + H N = O + O 2 (3)

    O + O 3 = O 2 + O 2 (4)

    Таким образом, атомы, образовавшиеся когда-то с молекул кислорода, вновь соединяются в молекулу. Отметим только, что, для того чтобы «развалить» молекулу озона, коротковолновое излучение не требуется. Связь атома О с молекулой О 2 в озоне очень слабый, поэтому даже при облучении видимым светом молекула озона будет фотодисоциюваты на исходные составляющие.

    Отмечу также, что реакция (3) является основным поставщиком атомов кислорода; ее скорость на всех высотах тропосферы и стратосферы на три и более порядка выше скорости реакции (1).

    Приведенный выше механизм был предложен в начале 1930-х годов английским геофизиком Чепменом и явился первой попыткой объяснить образование озонового слоя в атмосфере.

    Озон в стратосфере постоянно рождается и погибает, следовательно, его слой состоит из равновесного количества. А поскольку это равновесие подвижная, то толщина озонового слоя может меняться. Наблюдаются суточные, сезонные колебания содержания озона, а также циклы, связанные с многолетними изменениями солнечной активности. Наибольшее количество озона (46%) образуется в стратосфере тропического пояса, там максимум его плотности находится примерно на высоте26 кмот поверхности. В средних широтах он располагается ниже: зимой - на высоте22 км, А летом - 24 км. В полярных районах высота максимума составляет всего 13 -18 км, И здесь озон наиболее интенсивно переносится в нижние слои атмосферы.

    Существует большое количество причин ослабления озонового щита, вызванного антропогенной деятельностью. В целом их можно объединить в две группы.

    1. Выбросы высотных самолетов и ракет

    Во-первых, - это запуски космических ракет. Топливо сгорает, «выжигает» в озоновом слое большие дыры. Когда-то предполагалось, что эти «дыры» затягиваются. Оказалось, нет. Они существуют довольно долго.

    Во-вторых, - самолеты. Особенно те, что летят на высотах в 12 -15 км. Пара, выбрасываемой ими и другие вещества разрушают озон. Но, в то же время самолеты, летающие ниже12 км, Дают увеличение озона. В городах он - один из составляющих фотохимического смога.

    В-третьих, - окиси азота. Их выбрасывают те же самолеты, но больше всего их выделяется с поверхности почвы, особенно при разложении азотных удобрений.

    Поскольку на сегодня полеты на сверхзвуковых самолетах осуществляются не очень часто, они не наносят существенного вреда озоновому слою. Запуски ракет происходят также не слишком часто, но они могут наносить очень серьезный ущерб озоновому слою. Так, при общей массе орбитального корабля «Спейс Шаттл» сто сорок три с половиной тонны в процессе подъема до высоты50 кмтвердотопливная ракетная система выбрасывает 187 тонн Cl 2 и его соединений, 7 тонн оксидов азота и уничтожает за полет 10 миллионов тонн озона. Это очень много, потому что в земной атмосфере содержится всего 3000 000 000 тонн озона.

    Оксиды азота играют важную роль в формировании и разрушении озона, причем в стратосфере происходит каталитическое разрушение озона в тропосфере - каталитическое формирования.

    2. Хлорофторовуглеци (ХФУ), или фреоны

    Когда-то фреоны рассматривались как идеальные для практического применения химические вещества, поскольку они очень стабильны и неактивны, а значит, не токсичны. Как это ни парадоксально, но именно инертность этих соединений делает их опасными для атмосферного озона. ХФУ не распадаются быстро в тропосфере (нижнем слое атмосферы, простирающийся от поверхности земли до высоты10 км), Как это происходит, например, с большей частью окислов азота, и в конце концов проникают в стратосферу, верхняя граница которой располагается на высоте около 50 км. Когда молекулы ХФУ поднимаются до высоты примерно25 км, Где концентрация озона максимальна, они подвергаются интенсивному воздействию ультрафиолетового излучения (рис. 2), не проникает на меньшие высоты из-за экранирующего действия озона. Ультрафиолет разрушает устойчивые в обычных условиях молекулы фреонов, распадаются на компоненты, обладающие высокой реакционной способности, в частности, атомный хлор. Таким образом, ХФУ переносит хлор с поверхности земли через тропосферу и нижние слои атмосферы, где менее инертные соединения хлора разрушаются, в стратосферу, к слою с наибольшей концентрацией озона. Очень важно, что хлор при разрушении озона действует подобно катализатору: в ходе химического процесса его количество не уменьшается. Вследствие этого один атом хлора может разрушить до 100 000 молекул озона прежде чем будет дезактивирован или вернется в тропосферу. Сейчас выброс фреонов в атмосферу исчисляется миллионами тонн, но следует заметить, что даже в гипотетическом случае полного прекращения производства и использования ХФУ немедленного результата достичь не удастся: действие фреонов, которые уже попали в атмосферу, будет продолжаться несколько десятилетий. Считается, что время жизни в атмосфере для двух наиболее широко используемых ХФУ: фреон-11 (CFCl 3) и фреон-12 (CF 2 Cl 2) составляет 75 и 100 лет соответственно.

    Рис. 2 Разрушение озонового слоя Земли фреонами Один из самых впечатляющих доказательств того, что хлор действительно является агентом, ответственным за появление озоновой дыры, появился в сентябре 1987 г., когда ученые пролетели на самолете из Южной Америки прямо к Южному полюсу, в зону озоновой дыры. Увеличение и уменьшение концентрации озона почти точным зеркальным отражением уменьшения и увеличения концентрации ClО. Более того, концентрация Cl в самой озоновой дыре в сотни раз превышает любой уровень, который можно было бы объяснить с точки зрения атмосферной химии. Это явление часто называют «дымовой ружьем». Даже производители ХФУ убедились в том, что озоновая дыра нельзя считать нормальным явлением. Это свидетельство глубоких изменений в атмосфере, вызванных искусственными хлорсодержащими загрязнителями.

    Ученым потребовалось несколько лет, чтобы найти объяснение появлению озоновой дыры. Вкратце это такое.

    Поскольку Антарктида окружена океаном, ветры могут непрерывно циркулировать вокруг континента, на котором нет горных цепей. При южной зимы они образуют вокруг полюсный вихрь, воронку из ветров, что собирает воздух над Антарктидой и удерживает его, не позволяя смешиваться с другой атмосферой. Этот вихрь служит изолированным «реакционным котлом» для полярных атмосферных химических соединений (он значительно сильнее того, что образуется над Северным полюсом, поэтому северная озоновая дыра проявляется значительно слабее).

    Рис. 3 Озоновая дыра над Антарктидой Под давлением аргументов, приведенных выше, многие страны начали принимать меры, направленные на сокращение производства и использования фреонов. С 1978 г. в США было запрещено использование фреонов в аэрозолях. К сожалению, использование фреонов в других отраслях ограничено не было. В сентябре 1987 23 ведущие страны мира подписали в Монреале протокол, обязывающую их снизить потребление ХФУ. Сегодня под ним подписались около 150 стран.

    К тому, в 1985 г. было подписано Венскую конвенцию об охране озонового слоя, в которой развитые страны признавали факт проблемы разрушения озонового слоя.

    Согласно достигнутой договоренности в Монреале развитые страны должны были до 1999 г. снизить потребление хлорофторовуглецив до половины уровня 1986 Для использования в качестве пропеллента (т.е. инертной химического вещества, с помощью которой создается избыточное давление) в аэрозолях уже найден неплохой заменитель фреонов - пропан -бутановая смесь. По физическим параметрам она практически не уступает фреонам, но, в отличие от них, огнеопасна. Однако, такие аэрозоли уже производятся во многих странах. Сложнее дело с холодильными установками - вторым по величине потребителем фреонов. Дело в том, что из-за полярности молекулы ХФУ имеют высокую теплоту испарения, что очень важно для рабочего тела в холодильниках и кондиционерах. Лучшим известным на сегодня заменителем фреонов является аммиак, но он токсичен и все же уступает фреонам по физическим параметрам. Неплохие результаты получены для полностью фторированных углеводородов. Во многих странах ведутся разработки новых заменителей и уже достигнуты неплохие практические результаты, но полностью эта проблема еще не решена.

    Хочется надеяться, что проблема озонового слоя научит с большим вниманием и опаской относиться ко всем веществам, попадающим в атмосферу в результате антропогенной деятельности.

    Солнца молекулярный кислород) диссоциирует на атомы, которые затем соединяются с другими молекулами О2, образуя озон (О3). Относительно высокая концентрация озона (около 8 мл/м³) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения

    Этапы разрушения озонового слоя:

    1) Эмиссии : в результате деятельности человека, а также в результате природных процессов на Земле эмитируются (высвобождаются) газы, содержащие галогены (бром и хлор), т.е. вещества, разрушающие озоновый слой.

    2) Аккумулирование (эмитированные газы, содержащие галогены, аккумулируются (накапливаются) в нижних атмосферных слоях, и под воздействием ветра, а также потоков воздуха перемещаются в регионы, которые не находятся в прямой близости с источниками такой эмиссии газов).

    3) Перемещение (аккумулированные газы, содержащие галогены, с помощью потоков воздуха перемещаются в стратосферу).

    4) Преобразование (бóльшая часть газов, содержащих галогены, под воздействием ультрафиолетового излучения Солнца в стратосфере преобразуется в легко реагирующие галогенные газы, в результате чего в полярных регионах Земного шара разрушение озонового слоя происходит сравнительно активнее).

    5) Химические реакции (легко реагирующие галогенные газы вызывают разрушение озона стратосферы; фактор, способствующий реакциям - полярные стратосферные облака).

    6) Удаление (под воздействием воздушных потоков легко реагирующие галогенные газы возвращаются в тропосферу , где из-за присутствующей в облаках влажности и дождей разделяются, и таким образом из атмосферы полностью удаляются).

    Причины разрушения ОС:

    Во-первых , - это запуски космических ракет. Сгорающее топливо «выжигает» в озоновом слое большие дыры. Когда-то предполагалось, что эти «дыры» затягиваются. Оказалось, нет. Они существуют довольно долго. Во-вторых , самолеты, летящие на высотах в 12-15 км. Выбрасываемый ими пар и другие вещества разрушают озон. Но, в то же время самолеты, летающие ниже 12 км, дают прибавку озона. В городах он - один из составляющих фотохимического смога. В-третьих - окислы азота . Их выбрасывают те же самолеты, но больше всего их выделяется с поверхности почвы, особенно при разложении азотных удобрений.

    Последствия:

    Это негативно сказывается не только на всех живых существах : людях, животных, растениях, тропических лесах, но и на предметах. Например, если озоновый слой станет слишком тонким, резина, используемая в хозяйстве, прослужит намного меньше. Водные организмы, обитающие в верхних слоях воды, прекратят свое существование. Окончательно погибнет фауна амазоских джунглей с питонами и попугаями. Рыбные уловы и сельскохозяйственные урожаи значительно уменьшатся. Несомненно, разрушение озонового слоя отразится и на людях. Человечество станет болеть в два раза больше, потому что иммунитет значительно ослабнет. Вероятность заболевания раком кожи и катарактой увеличится.


    Ученые предполагают , что уменьшение озонового слоя на 1% приведет к активному распространению болезней. Например, случаи заболевания раком кожи увеличатся на 10 тысяч раз, а катарактой глаз - на 100 тысяч. Склонность человека к заболеваниям дыхательных путей и легких будет стремительно расти.

    Учеными ведутся поиски путей восстановления озонового слоя . Вначале для этой цели предлагалось создание фабрик по производству озона, после чего доставлять оный на самолетах в атмосферу . Другим вариантом является создание аэростатов оснащенных лазерами, имеющих питание от солнечных батарей, которые будут использовать кислород для создания озона. Наиболее же реальным выходом из этой ситуации является сокращение вырубки лесов, и увеличением зеленых насаждений.