Виды геометрических моделей. Виды геометрических моделей, их свойства, параметризация моделей. Виды и свойства моделей

Геометрическое моделирование

Векторная и растровая графика.

Графика бывает двух видов - векторная и растровая. Основное отличие - в принципе хранения изображения. Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и еще одно преимущество - при изменении размеров изображения не изменяется размер файла.Растровая графика - это прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей).

Растровое изображение можно сравнить с детской мозаикой, когда картинка составляется из цветных квадратиков. Компьютер запоминает цвета всех квадратиков подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большего объема памяти. Их сложно масштабировать и еще сложнее редактировать. Чтобы увеличить изображение, приходится увеличивать размер квадратиков, и тогда рисунок получается "ступенчатым". Для уменьшения растрового рисунка приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается, его мелкие детали становятся неразборчивыми. Этих недостатков лишена векторная графика. В векторных редакторах рисунок запоминается как совокупность геометрических фигур - контуров, представленных в виде математических формул. Чтобы пропорционально увеличить объект, достаточно просто изменить одно число: коэффициент масштабирования. Никаких искажений ни при увеличении, ни при уменьшении рисунка не возникает. Поэтому, создавая рисунок, вы можете не думать о его конечных размерах - вы всегда можете изменить их.

Геометрические преобразования

Ве́кторная гра́фика - это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Рассмотрим, к примеру, окружность радиуса r. Список информации, необходимой для полного описания окружности, таков:



радиус r ;

координаты центра окружности;

цвет и толщина контура (возможно прозрачный);

цвет заполнения (возможно прозрачный).

Преимущества этого способа описания графики над растровой графикой:

Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта).

Соответственно, можно бесконечно увеличить, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.

При увеличении или уменьшении объектов толщина линий может быть постоянной.

Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах ((англ.)), которые ведут к наилучшей возможной растеризации на растровых устройствах.

У векторной графики есть два фундаментальных недостатка.

Не каждый объект может быть легко изображен в векторном виде. Кроме того, количество памяти и времени на отображение зависит от числа объектов и их сложности.

Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет - трассировка растра обычно не обеспечивает высокого качества векторного рисунка.

Векторные графические редакторы, типично, позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять основные аффинные преобразования над объектами, изменять z-order и комбинировать примитивы в более сложные объекты.

Более изощрённые преобразования включают булевы операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д.

Векторная графика идеальна для простых или составных рисунков, которые должны быть аппаратно-независимыми или не нуждаются в фотореализме. К примеру, PostScript и PDF используют модель векторной графи

Линии и ломаные линии.

Многоугольники.

Окружности и эллипсы.

Кривые Безье.

Безигоны.

Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье).

Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях.

Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.

Основные виды геометрических моделей

Геометрические модели дают внешнее представление об объекте-оригинале и характеризуются одинаковыми с ним пропорциями геометрических размеров. Эти модели подразделяются на двумерные и трехмерные. Эскизы, схемы, чертежи, графики, живописные работы представляют собой примеры двумерных геометрических моделей, а макеты зданий, автомобилей, самолетов и т.д. – это трехмерные геометрические модели.

Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:

матрица поворота

матрица сдвига

матрица масштабирования

Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/промасштабированный относительно исходного

Подсистемы графического и геометрического моделирования (ГГМ) занимают центральное место в САПП. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму изделия, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, цвета поверхности и т.п.).

В подсистемах ГГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию при помощи ПК при необходимости корректировку решения в интерактивном режиме.

Две последние операции реализуются на базе вычислительных средств ГГМ. Когда говорят о математическом обеспечении ГГМ, имеют в виду, прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации.

Различают математическое обеспечение двумерного (2D) и трехмерного (3D) ГГМ.

Основные применения 2D ГГМ подготовка чертежной документации в САПП, топологическое проектирование печатных плат и кристаллов БИС в САПП электронной промышленности.

В процессе 3D моделирования создаются геометрические модели, т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).

Каркасная модель представляет форму изделия в виде конечного множества линий, лежащих на поверхностях изделия. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях САПП неудобно, и поэтому каркасные модели в настоящее время используют редко.

Поверхностная модель отображает форму изделия с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.

Особое место занимают модели изделий с поверхностями сложной формы, так называемыми скульптурными поверхностями . К таким изделиям относятся, например, корпуса микросхем, компьютеров, рабочих станций) и др.

Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к изделию пространству.

Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold ), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.

Систематизация геометрических моделей

Сгеометрическими моделями приходится иметь дело матема­тику и физику, инженеру и конструктору, ученому и рабочему, врачу и художнику, космонавту и фотографу. Однако до сих пор не существует какого-либо систематического руководства по геометрические моделям и их применению. Объясняется это прежде всего тем, что слишком широк и разнообразен круг геометри­ческих моделей.

Геометрические модели могут являться воплощением замысла проектировщика и служат для создания нового объекта. Име­ет место и обратная схема, когда по объекту делается модель, например, при реставрации или ремонте.

Геометрические модели классифицируют на предметные (чер­тежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и разме­рах объекта, о его расположении относительно других.

Чертежи машин, сооружений, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначе­ний, особых правил и определенного масштаба. Различают черте­жи деталей, монтажные, общего вида, сборочные, табличные, га­баритные, наружных видов, пооперационные и т.д. В зависимости от стадии проектирования чертежи различают на чертежи тех­нического предложения, эскизного и технического проектов, ра­бочие чертежи. Чертежи также различают по отраслям производс­тва: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, числовые отметки, аффинные проекции, стереографические проек­ции, киноперспектива и т.д.

Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные.

Графические построения могут служить для получения чи­сленных решений различных задач. При вычислении алгебраи­ческих выражений числа изображаются направленными отрезка­ми. Для нахождения разности или суммы чисел соответствую­щие им отрезка откладываются на прямой. Умножение и деле­ние осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла параллельными прямыми. Комбинация действий умножения и сложения позволяет вычис­лять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений явля­ется значение абсциссы точки пересечения кривых. Графичес­ки можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать, и интегрировать диффе­ренциальные уравнения. Геометрические модели для графичес­ких вычислений необходимо отличать от номограмм и расчет­ных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограм­мы и РГМ представляют собой геометрические изображения фун­кциональных зависимостей и не требуют для нахождения чис­ленных значений новых построений. Номограммы и РГМ исполь­зуются для вычислений и исследований функциональных зави­симостей. Вычисления на РГМ и номограммах заменяется счи­тыванием ответов с помощью элементарных операций, указан­ных в ключе номограммы. Основными элементами номограмм яв­ляются шкалы и бинарные поля. Номограммы подразделяют на элементарные и составные. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограм­мы состоит в том, что для построения РГМ используются гео­метрические методы, а для построения номограмм – аналити­ческие методы.

Геометрические модели, изображающие отношения между элементами множества называются графами . Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой линией. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планиро­вания и управления, теории расписаний, социологии, биоло­гии, электронике, в решений вероятностных и комбинаторных задач и т.п.

Графическая модель функциональной зависимости называет­ся графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования.

Графическое изображение, наглядно показывающее соотно­шение каких-либо величин, является диаграммой. Например, ди­аграмма состояния (фазовая диаграмма), графически изобража­ет соотношение между параметрами состояния термодинамической равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо вели­чин по количественному признаку, называется гистограммой.

Особо важное значение имеют теоретические геометричес­кие модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразова­ния и неизменные свойства фигур, независящие от них. В на­чертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассмат­риваются в планиметрии, свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются за­висимости между углами и сторонами сферических треугольни­ков. Теория фотограмметрии и стереофотограмметрии позволя­ет определять формы, размеры и положения объектов по их фо­тографическим изобра

Под геометрической моделью объекта понимается совокупность сведений, однозначно определяющих его конфигурацию и геометрические параметры.

В настоящее время существует два подхода к автоматизированному созданию геометрических моделей с использованием компью­терных технологий.

Первый подход, представляющий традиционную технологию создания графических изображений, базируется на двухмерной геометрической модели и фактическом использовании компьютера как электронного кульмана, позволяющего ускорить процесс вычерчивания объекта и улучшить качество оформления конструкторской документации. Центральное место при этом занимает чер­теж, который служит средством представления изделия на плоскости в виде ортогональных проекций, видов, разрезов и сечений и содержит всю необходимую информацию для разработки технологического процесса изготовления изделия. В двухмерной модели геометрия изделия отображается в компьютере как плоский объект, каждая точка которого представляется с помощью двух координат: X и Y.

Очевидны основные недостатки использования двухмерных моделей при автоматизированном проектировании:

Создаваемую конструкцию объекта приходится мысленно представлять в виде отдельных элементов чертежа (ортогональных проекций, видов, разрезов и сечений), что является сложным процессом даже для опытных разработчиков и зачастую приводит к ошибкам проектирования конструкций изделий;

Все графические изображения на чертеже (ортогональные проекции, виды, разрезы, сечения) создаются независимо друг от друга и поэтому ассоциативно не связаны, то есть каждое изменение объекта проектирования ведет за собой необходимость выполнения изменений (редактирования) в каждом соответствующем графическом изображении чертежа, что является трудоемким процессом и причиной значительного количества ошибок при модификации конструкций изделий;

Невозможность использования полученных чертежей для создания компьютерных моделей контрольных сборок объектов из составляющих компонентов (агрегатов, узлов и деталей);

Сложность и высокая трудоемкость создания аксонометрических изображений сборочных единиц изделий, их каталогов и руководств по их эксплуатации;

Двухмерные модели неэффективно использовать на последующих (после создания конструкции изделия) этапах производственного цикла.

Второй подход к разработке графических изображений объектов проектирования основан на использовании трехмерных геометрических моделей объектов, которые создаются в автоматизированных системах трехмерного моделирования. Такие компьютерные модели являются наглядным спо­собом представления объектов проектирования, что позволяет исключить перечисленные недостатки двухмерного моделирования и значительно расширить эффективность и области применения трехмерных моделей на различных этапах производственного цикла изготовления изделий.

Трехмерные модели служат для компьютерного представления моделей изделий в трех измерениях, то есть геометрия объекта представляется в компьютере с помощью трех координат: X, Y и Z. Это позволяет перестраивать аксонометрические проекции моделей объектов в различных пользовательских системах координат, а также получать их аксонометрические виды с любой точки зрения или визуализировать их в виде перспективы. Поэтому трехмерные геометрические модели обладают значительными преимуществами по сравнению с двухмерными моделями и позволяют значительно повысить эффективность проектирования.

Основные достоинства трехмерных моделей:

Изображение наглядно и просто воспринимается проектировщиком;

Чертежи деталей создаются с помощью автоматически получаемых проекций, видов, разрезов и сечений трехмерной модели объекта, что значительно повышает производительность разработки чертежей;

Изменения в трехмерной модели автоматически вызывают соответствующие изменения в ассоциативно связанных графических изображениях чертежа объекта, что позволяет быстро модифицировать чертежи;

Возможно создание трехмерных моделей виртуальных контрольных сборок и каталогов изделий;

Трехмерные модели используются для создания операционных эскизов технологических процессов изготовления деталей и формообразующих элементов технологической оснастки: штампов, прессформ, литейных форм;

С помощью трёхмерных моделей можно проводить имитирование работы изделий с целью определения их работоспособности до изготовления;

Трехмерные модели используются в системах автоматизированной подготовки программ для автоматического программирования траекторий перемещения рабочих органов многокоординатных станков с числовым программным управлением;

Эти достоинства позволяют эффективно использовать трехмерные модели в системах автоматизированного управления жизненным циклом изделий.

Различают три основных вида трехмерных моделей:

- каркасные (проволочные), в которых изображения представляются координатами вершин и соединяющими их ребрами;

- поверхностные , представляемые поверхностями, ограничивающими создаваемую модель объекта;

- твердотельные , которые формируется из моделей сплошных тел;

- гибридные .

Трехмерные графические модели содержат информацию обо всех графических примитивах объекта, расположенного в трехмерном пространстве, то есть строится числовая модель трехмерного объекта, каждая точка которого имеет три координаты (X,Y,Z).


Каркасная модель представляет объемное изображение объекта в виде линий пересечения граней объекта. В качестве примера на рис.10.1 показана каркасная модель и структура данных компьютерной модели внутренних вычислений тетраэдра.

Рис. 10.1. Структура данных каркасной модели тетраэдра

Основные недостатки каркасных моделей:

Невозможно автоматическое удаление скрытых линий;

Возможность неоднозначного представления объекта;

В сечении объекта плоскостями будут только точки пересечения ребер объекта;

Однако каркасные модели не требуют большого количества вычислений, то есть высокого быстродействия и большой компьютерной памяти. Поэтому они экономичны с точки зрения использования их при создании компьютерных изображений.

В поверхностных моделях объемное изображение объекта представляется в виде совокупности отдельных поверхностей.

При создании трехмерных поверхностных моделей используются аналитические и сплайн-поверхности.

Аналитические поверхности (плоскость, цилиндр, конус, сфера и др.) описываются математическими уравнениями.

Сплайн-поверхности представляются массивами точек, между которыми положения остальных точек определяются с помощью математической аппроксимации. На рис. 10.2б показан пример сплайн-поверхности, созданной перемещением плоского эскиза (рис.10.2а) в выбранном направлении.


Рис. 10.2. Пример сплайн-поверхности

Недостатки поверхностных моделей:

В сечении объекта плоскостями будут только линии пересечения поверхностей объекта с секущими плоскостями;

Невозможно выполнение логических операций сложения, вычитания и пересечения объектов.

Достоинства поверхностных моделей:

Однозначное представление объекта;

Возможность создания моделей объектов, имеющих сложные по конфигурации поверхности.

Трехмерные поверхностные модели нашли широкое применение при создании моделей сложных объектов, состоящих из поверхностей, относительная толщина которых намного меньше размеров создаваемых моделей объектов (корпус судна, фюзеляж самолета, кузов автомобиля и др.).

Кроме того, поверхностные модели используются при создании гибридных твердотельных моделей с использованием поверхностно-ограниченных моделей, когда создание твердотельной модели очень сложно или невозможно вследствие сложных поверхностей объекта.

Твердотельная модель является реальным представлением объекта, так как структура компьютерных данных включает координаты точек всего тела объекта. Это позволяет осуществлять логические операции над объектами: объединение, вычитание и пересечение.

Существует две разновидности твердотельных моделей: поверхностно-ограниченная и объемная.

В поверхностно-ограниченной твердотельной модели границы объекта формируются с помощью поверхностей.

Для объемной твердотельной модели модель внутренних вычислений представляет координаты точек всего твердого тела. Очевидно, что твердотельные модели объектов требуют выполнения большого количества вычислений по сравнению с каркасными и поверхностными моделями, так как в процессе их преобразований требуется пересчет координат всех точек тела объекта и в связи с этим – больших вычислительных мощностей компьютеров (быстродействия и оперативной памяти). Однако эти модели обладают достоинствами, позволяющими эффективно использовать их в процессе автоматизированного проектирования:

Возможно автоматическое удаление скрытых линий;

Наглядность и невозможность неоднозначного представления объекта;

В сечении объекта плоскостями будут получаться разрезы, используемые при создании чертежей;

Возможно выполнение логических операций сложения, вычитания и пересечения объектов.

На рис.10.3 в качестве иллюстрации показаны результаты сечения плоскостью различных типов трехмерных моделей параллелепипеда: каркасной, поверхностной и твердотельной.


Рис. 10.3. Сечения плоскостью различных типов трехмерных моделей

Эта иллюстрация показывает, что с помощью трехмерных моделей возможно получение разрезов и сечений, что требуется выполнять при создании чертежей изделий.

Принцип создания сложной модели объекта основан на последовательном выполнении трех логических (булевых) операций с твердотельными моделями(рис.10.4): гибридная модель , представляющая собой комбинацию поверхностно-ограниченной модели и объемной твёрдотельной модели, что позволяет использовать преимущества обеих моделей.

Достоинства твердотельных и гибридных моделей являются основной причиной их широкого использования при создании трехмерных моделей объектов, несмотря на необходимость выполнения большого количества вычислений и, соответственно, применения компьютеров, имеющих большую память и высокое быстродействие.

Результатом геометрического моделирования некоторого объекта является математическая модель его геометрии. Математическая модель позволяет графически отобразить моделируемый объект, получить его геометрические характеристики, выполнить исследование многих физических свойств объекта путем постановки численных экспериментов, подготовить производство и, наконец, изготовить объект.

Для того чтобы увидеть, как выглядит объект, нужно смоделировать поток падающих и возвращающихся от его поверхностей лучей света. При этом граням модели можно придать необходимый цвет, прозрачность, фактуру и другие физические свойства. Модель можно осветить с разных сторон светом различного цвета и интенсивности.

Геометрическая модель позволяет определить массово-центровочные и инерционные характеристики проектируемого объекта, выполнить измерения длин и углов его элементов. Она дает возможность произвести расчет размерных цепей и определить собираемость проектируемого объекта. Если объект представляет собой механизм, то на модели можно проверить его работоспособность и выполнить расчет кинематических характеристик.

Используя геометрическую модель, можно поставить численный эксперимент по определению напряженно-деформированного состояния, частот и форм собственных колебаний, устойчивости элементов конструкции, тепловых, оптических и других свойств объекта. Для этого нужно дополнить геометрическую модель физическими свойствами, смоделировать внешние условия ее работы и, используя физические законы, выполнить соответствующий расчет.

По геометрической модели можно вычислить траекторию режущего инструмента для механической обработки объекта. При выбранной технологии изготовления объекта геометрическая модель позволяет спроектировать оснастку и выполнить подготовку производства, а также проверить саму возможность изготовления объекта данным способом и качество этого изготовления. Кроме того, возможна графическая имитация процесса изготовления. Но для того, чтобы изготовить объект, кроме геометрической информации нужна информация о технологическом процессе, производственном оборудовании и многом другом, связанном с производством.

Многие из перечисленных проблем образуют самостоятельные разделы прикладной науки и по своей сложности не уступают, а в большинстве случаев и превосходят проблему создания геометрической модели. Геометрическая модель является отправной точкой для дальнейших действий. При построении геометрической модели мы не использовали физические законы, радиус-вектор каждой точки границы раздела внешней и внутренней частей моделируемого объекта является известным, поэтому при построении геометрической модели нам приходится составлять и решать алгебраические уравнения.

Задачи, в которых используются физические законы, приводят к дифференциальным и интегральным уравнениям, решение которых сложнее решения алгебраических уравнений.

В данной главе остановимся на выполнении расчетов, не связанных с физическими процессами. Мы рассмотрим вычисление чисто геометрических характеристик тел и их плоских сечений: площади поверхности, объема, центра масс, моментов инерции и ориентации главных осей инерции. Эти расчеты не требуют привлечения дополнительной информации. Кроме этого, мы рассмотрим проблемы численного интегрирования, которые приходится решать при определении геометрических характеристик.

Определение площади, центра масс и моментов инерции плоского сечения тела приводит к вычислению интегралов по площади сечения. Для плоских сечений мы располагаем информацией об их границах. Интегралы по площади плоского сечения мы сведем к криволинейным интегралам, которые в свою очередь сводятся к определенным интегралам. Определение площади поверхности, объема, центра масс, моментов инерции тела приводит к вычислению поверхностных и объемных интегралов. Мы будем опираться на представление тела с помощью границ , т. е. на описание тела совокупностью ограничивающих его поверхностей и топологическую информацию о взаимном соседстве этих поверхностей. Мы сведем интегралы по объему тела к поверхностным интегралам по поверхностям граней тела, которые в свою очередь сводятся к двойным интегралам. В общем случае область интегрирования представляет собой связную двухмерную область. Вычисление двойных интегралов численными методами можно выполнить для областей простых типов - четырехугольной или треугольной формы. В связи с этим в конце главы рассмотрены методы вычисления определенных интегралов и двойных интегралов по четырехугольным и треугольным областям. Методы разбивки областей определения параметров поверхностей на совокупности треугольных подобластей рассмотрены в следующей главе.

В начале главы рассмотрим сведение интегралов по площади к криволинейным интегралам и сведение объемных интегралов к поверхностным интегралам. На этом будут базироваться вычисления геометрических характеристик моделей.


Геометрическая модель Модель – такое представление данных, которое наиболее адекватно отражает свойства реального объекта, существенные для процесса проектирования. Геометрические модели описывают объекты, обладающие геометрическими свойствами. Таким образом, геометрическое моделирование – это моделирование объектов различной природы с помощью геометрических типов данных.

Основные вехи в создании математических основ современных геометрических моделей Изобретение станка с ЧПУ – начало 50 -х годов (Массачусетский технологический институт MIT) – необходимость создания цифровой модели детали Создание «скульптурных поверхностей» (потребности авиа и автомобилестроения) – для Citroen математик Поль де Кастельжо предложил построить гладкие кривые и поверхности по набору контрольных точек – будущие кривые и поверхности Безье – 1959 г. Результаты работы опубликованы в 1974 г.

Билинейный лоскут (bilinear patch) – гладкая поверхность, построенная по 4 -м точкам. Билинейный лоскут Кунса (поверхность Кунса –Coons patch) – гладкая поверхность, построенная по 4 -м граничным кривым – автор Стивен Кунс – профессор MIT – 1967 г. Кунс предложил использовать рациональный полином для описания конических сечений Сазерленд – ученик Кунса разработал структуры данных для будущих геометрических моделей, предложил ряд алгоритмов, решающих задачу визуализации

Создание поверхности, контролирующей гладкость между граничными кривыми, поверхность Безье – автор Пьер Безье – инженер компании Renault – 1962 г. Основой для разработки таких поверхностей были кривые и поверхности Эрмита, описанные французским математиком - Шарлем Эрмитом (середина 19 века)

Использование сплайнов (кривые, степень которых не определяется числом опорных точек, по которым она строится) в геометрическом моделировании. Исаак Шенберг(1946 г.) дал их теоретическое описание. Карл де Бур и Кокс рассмотрели эти кривые применительно к геометрическому моделированию – их название В-сплайны – 1972 г.

Использование NURBS (рациональные В-сплайны на неравномерной сетке параметризации) в геометрическом моделировании – Кен Версприл (Сиракузский Университет), затем сотрудник Computervision -1975 г. NURBS впервые использовал Розенфельд в системе моделирования Alpha 1 и Geomod – 1983 г. Возможность описания всех типов конических сечений с помощью рациональных В-сплайнов – Юджин Ли – 1981 г. Данное решение найдены при разработке САПР TIGER, используемой в авиастроительной компании Boeing. Этой компанией было предложено включить NURBS в формат IGES Разработка принципов параметризации в геометрическом моделировании, введение понятия фичерc (future) – С. Гейзберг. Первопроходцы – PTC (Parametric Technology Corporation), первая система, поддерживающая параметрическое моделирование – Pro/E -1989 г.

Математические знания, необходимые для изучения геометрических моделей Векторная алгебра Матричные операции Формы математического представления кривых и поверхностей Дифференциальная геометрия кривых и поверхностей Аппроксимация и интерполяция кривых и поверхностей Сведения из элементарной геометрии на плоскости и в пространстве

Классификация геометрических моделей по информационной насыщенности По информационной насыщенности Каркасная (проволочная) Каркасноповерхностная Модель сплошных тел или твердотельная модель

Классификация геометрических моделей по внутреннему представлению По внутреннему представлению Граничное –Boundary representation –B-rep -аналитическое описание - оболочка Структурная модель – дерево построения Структура + границы

Классификация по способу формирования По способу формирования Жестко-размерное моделирование или с явным заданием геометрии – задание оболочки Параметрическая модель Кинематическая модель(lofting, sweep, Extrude, revolve, протянутая, заметающая) Модель конструктивной геометрии (использование базовых элементов формы и булевых операций над ними – пересечение, вычитание, объединение) Гибридная модель

Способы построения кривых в Геометрическом моделировании Основой создания трехмерной поверхностной модели являются кривые. Способы построения кривых в геометрическом моделировании: Интерполяция – кривые Эрмита и кубические сплайны Аппроксимация – кривые Безье, Всплайновые кривые, NURBS кривые

Основные способы построения поверхностных моделей Аналитические поверхности Плоскостиполигональные сетки Квадратичные поверхности – конические сечения Поверхности, построенные по точкам Полигональные сетки Билинейная поверхность Линейная и бикубическая поверхность Кунса Поверхность Безье В-сплайновые поверхности NURBS поверхности Треугольные поверхности Поверхности, построенные по кинематическому принципу Поверхность вращения Поверхность соединения Заметающая поверхность Сложные sweep и lofting поверхности

Твердотельная модель При моделировании твердых тел используются топологические объекты, несущие в себе топологическую и геометрическую информацию: Грань; Ребро; Вершина; Цикл; Оболочка Основа твердого тела – его оболочка, которая строится на основе поверхностей

Способы твердотельного моделирования: явное (прямое) моделирование, параметрическое моделирование. Явное моделирование 1. Модель конструктивной геометрии – использование БЭФ и булевых операций. 2. Кинематический принцип построения. 3. Моделирование оболочки в явном виде. 4. Объектно-ориентированное моделирование – использование фичерсов.

Геометрия, базирующаяся на конструктивно-технологических элементах (фичерсах) (объектноориентированное моделирование) ФИЧЕРСЫ – одиночные или составные конструктивные геометрические объекты, содержащие информацию о своем составе и легко изменяемые в процессе проектирования (фаски, ребра и т. п.) зависимо от в внесенных в геометрическую модель изменений. ФИЧЕРСЫ – параметризованные объекты, привязанные к другим элементам геометрической модели.

Поверхностные и твердотельные модели, построенные по кинематическому принципу Вращение Простое перемещение – выдавливание Смешивание двух профилей Простое перемещение профиля вдоль кривой Перемещение профиля вдоль кривой с его изменением в плоскости сечения

Примеры твердых тел, построенных по кинематическому принципу 1. Смешивание профилей по определенному закону (квадратичный, кубический и т. д.)

Параметрические модели Параметрическая модель – это модель, представленная с помощью совокупности параметров, устанавливающих соотношение между геометрическими и размерными характеристиками моделируемого объекта. Типы параметризациии Иерархическая параметризация вариационная Параметризация Геометрическая или размерная параметризация Табличная параметризация

Иерархическая параметризация Параметризация на основе истории построений первая параметрическая модель. История превращается в параметрическую модель, если с каждой операцией ассоциировать определенные параметры. В ходе построения модели вся последовательность построения, например, порядок выполненных геометрических преобразований, отображается в виде дерева построения. Внесение изменений на одном из этапов моделирования приводит к изменению всей модели и дерева построения.

Недостатки иерархической параметризации ü Введение циклических зависимостей в модели приведет к отказу системы в создании такой модели. ü Ограничены возможности редактирования такой модели из-за отсутствия достаточной степени свободы (возможность редактирования параметров каждого элемента по очереди) ü Сложность и непрозрачность для пользователя ü Дерево построения может быть очень сложным, пересчет модели потребует много времени ü Решение о том, какие параметры менять происходит только в процессе построения ü Невозможность применения этого подхода при работе с разнородными и унаследованными данными

Иерархическую параметризацию можно отнести к жесткой параметризации. При жесткой параметризации в модели полностью заданы все связи. При создании модели с помощью жесткой параметризации очень важным является порядок определения и характер наложенных связей, которые будут управлять изменением геометрической модели. Такие связи наиболее полно отражает дерево построения. Для жесткой параметризации характерно наличие случаев, когда при изменении параметров геометрической модели решение вообще не м. б. найдено, т. к. часть параметров и установленные связи вступают в противоречие друг с другом. Тоже самое может возникнуть при изменении отдельных с этапов дерева построения Использование дерева построения при создании модели приводит к созданию модели на основе истории, такой подход к моделированию называется процедурным

Отношение Родитель/Потомок. Основной принцип иерархической параметризации –фиксация всех этапов построения модели в дереве построения. Это и есть определение отношений Родитель/Потомок. При создании нового конструктивного элемента, все другие элементы, на которые ссылается создаваемый конструктивный элемент, становятся его Родителями. Изменение родительского конструктивного элемента приводит к изменению всех его потомков.

Вариационная параметризация Создание геометрической модели с использованием ограничений в виде системы алгебраических уравнений, определяющей зависимость между геометрическими параметрами модели. Пример геометрической модели, построенной на основе вариационной параметризации

Пример создание параметрической модели эскиза средствами вариационной параметризации в Pro/E Наличие символьного обозначения каждого размера позволяет задавать соотношения размеров с помощью математических формул.

Геометрическая параметризация основана на пересчете параметрической модели в зависимости от геометрических параметров родительских объектов. Геометрические параметры, влияющие на модель, построенную на основе геометрической параметризации ü Параллельность ü Перпендикулярность ü Касательность ü Концентричность окружностей ü И т. п. В геометрической параметризации используются принципы ассоциативной геометрии

Геометрическую и вариационную параметризацию можно отнести к мягкой параметризации Почему? мягкая параметризация - это метод построения геометрических моделей, в основе которого лежит принцип решения нелинейных уравнений, описывающих связи между геометрическими характеристиками объекта. Связи в свою очередь задаются формулами, как в случае вариационных параметрических моделей, или геометрическими соотношениями параметров, как в случае моделей, созданных на основе геометрической параметризации. Метод построения геометрической модели с помощью вариационной и геометрической параметризации называют - декларативным

Табличная параметризация Создание таблицы параметров типовых деталей. Генерация нового типового объекта производится путем выбора из таблицы типоразмеров. Пример таблицы типоразмеров, создаваемой в Pro/E

Понятие косвенного и прямого редактирования Косвенное редактирование предполагает наличие дерева построения для геометрической модели – редактирование происходит внутри дерева Прямое редактирование предполагает работу с границей твердого тела, т. е. с его оболочкой. Редактирование модели не на основе дерева построения, а в результате изменения составляющих оболочки твердого тела

Ядра геометрического моделирования Ядро геометрического моделирования – совокупность программных средств построения трехмерных геометрических моделей, основанных на математических методах их построения. ACIS – Dassault System – граничное представление Parasolid – Unigraphics Solution – граничное представление Granite – используется в Pro/E и Creo – поддерживает трехмерное параметрическое моделирование

Основные составляющие ядер геометрического моделирования Структура данных для моделирования – конструктивное представление – модель конструктивной геометрии или граничное представление – B-rep модель. Математический аппарат. Средства визуализации. Набор интерфейсов – API (Application Programming Interface)

Методы создания геометрических моделей в современных САПР Методы для создания моделей на основе трехмерных или двухмерных заготовок (базовых элементов формы) –создание примитивов, булевы операции Создание объемного тела или поверхностной модели по кинематическому принципу –заметание, lofting, sweep и т. п. Часто используется принцип параметризации Изменение тел или поверхностей путем плавного сопряжения, скругления, вытягивания Методы редактирования границ – манипулирование составляющими объемных тел (вершинами, ребрами, гранями и т. п.). Используются для добавления, удаления, изменения элементов объемного тела или плоской фигуры. Методы для моделирования тела при помощи свободных форм. Объектно-ориентированное моделирование. Использование конструктивных элементов формы – фичерсов (features) (фаски, отверстия, скругления, пазы, выемки и т. п.) (пример, сделать такое-то отверстие в таком-то месте)

Задачи, решаемые САПР различного уровня 1. Решение задач базового уровня проектирования, параметризация или отсутствует, или реализована на низком самом простом уровне 2. Имеют достаточно сильную параметризацию, ориентированы на индивидуальную работу, невозможна совместная работа разных разработчиков над одним проектом одновременно. 3. Позволяют реализовать параллельную работу проектантов. Системы строятся по модульному принципу. Весь цикл работ производится без потери данных и параметрических связей. Основный принцип – сквозная параметризация. В таких системах допускается изменение модели изделия и самого изделия на любой стадии работ. Поддержка на любом уровне жизненного цикла изделия. 4. Решаются задачи создания моделей узкой области использования. Могут быть реализованы все возможные способы создания моделей

Классификация современных САПР Параметры классификации степень параметризации Функциональная насыщенность Области применения (авиа-, автомобиле- , приборостроение) Современные САПР 1. Низкого уровня (малые, легкие): Auto. CAD, Компас и т. п. 2. Среднего уровня (средние): Pro Desktop, Solid Works, Power Shape и т. п. 3. Высокого уровня (большие, тяжелые): Pro/E , Creo (PTC), Catia, Solid Works (Dassault Systemes), Siemens PLM Software (NX Unigraphics) 4. Специализированные: СПРУТ, Icem Surf, САПР, используемые в конкретных отраслях – MCAD, ACAD, ECAD

Примеры САПР различного уровня Низкого уровня – Auto. CAD, Компас Среднего уровня – Inventor (Autodesk), Solid Edge (Siemens), Solid Works (Dassault System), T-Flex – компания «Топ Системы» Высокого уровня – Pro/E-Creo Parametric(PTC), CATIA(Dassault System), NX(Unigraphics –Siemens PLM Software) Специализированные – СПРУТ, Icem Surf(PTC)

Основные концепции моделирования в настоящее время 1. Flexible engineering (гибкое проектирование): ü ü Параметризация Проектирование поверхностей любой сложности (фристайл поверхности) Наследование других проектов Целезависимое моделирование 2. Поведенческое моделирование ü ü ü Создание интеллектуальных моделей (smart модели) - создание моделей, адаптированных к среде разработки. В геометрическую модель м. б. включены интеллектуальные понятия, например, фичерсы Включение в геометрическую модель требований к изготовлению изделия Создание открытой модели, позволяющей ее оптимизировать 3. Использование идеологии концептуального моделирования при создании больших сборок ü ü Использование ассоциативных связей (набор параметров ассоциативной геометрии) Разделение параметров модели на различных этапах проектирования сборки