Нервная система процесс передачи импульса. Механизм нервно-мышечной передачи. Нейрон как структурная единица системы

В клеточной мембране располагаются Na + , K + –АТФазы, натриевые и калиевые каналы.

Na + , K + –АТФаза за счет энергии АТФ постоянно перекачивает Na + наружу и К + внутрь, создавая трансмембранный градиент концентраций этих ионов. Натриевый насос ингибируется уабаином.

Натриевые и калиевые каналы могут пропускать Na + и К + по градиентам их концентраций. Натриевые каналы блокируются новокаином, тетродотоксином, а калиевые - тетраэтиламмонием.

Работа Na + ,K + –АТФазы, натриевых и калиевых каналов может создавать на мембране потенциал покоя и потенциал действия.

Потенциал покоя – это разность потенциалов между наружной и внутренней мембраной в условиях покоя, когда натриевые и калиевые каналы закрыты. Его величина составляет -70мВ, он создается в основном концентрацией K + и зависит от Na + и Cl - . Концентрация К + внутри клетки составляет 150 ммоль/л, снаружи 4-5 ммоль/л. Концентрация Na + внутри клетки составляет 14 ммоль/л, снаружи 140 ммоль/л. Отрицательный заряд внутри клетки создают анионы (глутамат, аспартат, фосфаты), для которых клеточная мембрана непроницаема. Потенциал покоя одинаков на всем протяжении волокна и не является специфической особенностью нервных клеток.

Раздражение нерва может приводит к возникновению потенциала действия.

Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней мембраной в момент возбуждения. Потенциал действия зависит от концентрации Na + и возникает по принципу «все или ничего».

Потенциал действия состоит из следующих стадий:

1. Локальный ответ . Если при действии стимула происходит изменение потенциала покоя до пороговой величины -50мВ, то открываются натриевые каналы, имеющие более высокую пропускную способность, чем калиевые.

2. Стадия деполяризации. Поток Na + внутрь клетки приводит сначала к деполяризации мембраны до 0 мВ, а затем к инверсии полярности до +50мВ.

3. Стадия реполяризации. Натриевые каналы закрываются, а калиевые открываются. Выход К + из клетки восстанавливает мембранный потенциал до уровня потенциала покоя.

Ионные каналы открываются на непродолжительное время и после их закрытия натриевый насос восстанавливает исходное распределение ионов по сторонам мембраны.

Нервный импульс

В отличие от потенциала покоя, потенциал действия охватывает лишь очень небольшой участок аксона (в миелинизированных волокнах – от одного перехвата Ранвье до соседнего). Возникнув в одном участке аксона, потенциал действия вследствие диффузии ионов из этого участка вдоль волокна снижает потенциал покоя в соседнем участке и вызывает здесь то же развитие потенциала действия. Благодаря этому механизму потенциал действия распространяется по нервным волокнам и называется нервным импульсом .

В миелинизированном нервном волокне натриевые и калиевые ионные каналы расположены в немиелинизированных участках перехватов Ранвье, где мембрана аксона контактирует с межклеточной жидкостью. Вследствие этого нервный импульс перемещается «скачками»: ионы Na + , поступающие внутрь аксона при открытии каналов в одном перехвате, диффундируют вдоль аксона по градиенту потенциалов до следующего перехвата, снижают здесь потенциал до пороговых значений и тем самым индуцируют потенциал действия. Благодаря такому устройству скорость поведения импульса в миелинизированном волокне в 5-6 раз больше, чем в немиелинизированных волокнах, где ионные каналы расположены равномерно по всей длине волокна и потенциал действия перемещается не скачками, а плавно.

Синапс: виды, строение и функции

Вальдаер в 1891г. сформулировал нейронную теорию , согласно которой нервная система состоит из множества отдельных клеток – нейронов. В ней оставался неясным вопрос: каков механизм коммуникации между единичными нейронами? Ч. Шеррингтон в 1887г. для объяснения механизма взаимодействия нейронов ввел термин «синапс» и «синаптическая передача».

Нервный импульс (лат. nervus нерв; лат. impulsus удар, толчок) - волна возбуждения, распространяющаяся по нервному волокну; единица распространяющегося возбуждения.

Нервный импульс обеспечивает передачу информации от рецепторов к нервным центрам и от них к исполнительным органам - скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внутренней и внешней секреции и т. д.

Сложная информация о действующих на организм раздражениях кодируется в виде отдельных групп Нервных импульсов - рядов. Согласно закону «Все или ничего » (см.) амплитуда и длительность отдельных Нервных импульсов, проходящих по одному и тому же волокну, постоянны, а частота и количество Нервных импульсов в ряду зависят от интенсивности раздражения. Такой способ передачи информации является наиболее помехоустойчивым, т. е. в широких пределах не зависит от состояния проводящих волокон.

Распространение Нервных импульсов отождествляется с проведением потенциалов действия (см. Биоэлектрические потенциалы). Возникновение возбуждения может быть результатом раздражения (см.), напр, воздействие света на зрительный рецептор, звука на слуховой рецептор, или процессов, протекающих в тканях (спонтанное возникновение Н. и.). В этих случаях Н. и. обеспечивают согласованную работу органов при протекании какого-либо физиологического процесса (напр., в процессе дыхания Н. и. вызывают сокращение скелетных мышц и диафрагмы, результатом чего являются вдох и выдох, и т. д.).

В живых организмах передача информации может осуществляться и гуморальным путем, посредством выброса в русло крови гормонов, медиаторов и т. п. Однако преимущество информации, передаваемой при помощи Н. и., состоит в том, что она более целенаправленна, передается быстро и может быть точнее закодирована, чем сигналы, посылаемые гуморальной системой.

Факт, что нервные стволы являются путем, по к-рому передаются влияния от мозга к мышцам и в обратном направлении, был известен еще в эпоху античности. В средние века и вплоть до середины 17 в. считалось, что по нервам распространяется некая субстанция, подобная жидкости или пламени. Идея о электрической природе Н. и. возникла в 18 в. Первые исследования электрических явлений в живых тканях, связанных с возникновением и распространением возбуждения, были осуществлены Л. Гальвани. Г. Гельмгольц показал, что скорость распространения Н. и., к-рую ранее считали близкой к скорости света, имеет конечное значение и может быть точно измерена. Германн (L. Hermann) ввел в физиологию понятие потенциала действия. Объяснение механизма возникновения и проведения возбуждения стало возможным после создания С. Аррениусом теории электролитической диссоциации. В соответствии с этой теорией Бернштейн (J. Bernstein) предположил, что возникновение и проведение Н. и. обусловлено перемещением ионов между нервным волокном и окружающей средой. Англ. исследователи А. Ходжкин, Б. Катц и Э. Хаксли детально исследовали трансмембранные ионные токи, лежащие в основе развития потенциала действия. Позже стали интенсивно изучаться механизмы работы ионных каналов, по к-рым происходит обмен ионами между аксоном и окружающей средой, и механизмы, обеспечивающие способность нервных волокон проводить ряды Н. и. разного ритма и продолжительности.

Н. и. распространяется за счет местных токов, возникающих между возбужденным и невозбужденным участками нервного волокна. Ток, выходящий из волокна наружу в покоящемся участке, служит раздражителем. Наступающая после возбуждения в данном участке нервного волокна рефрактерность обусловливает поступательное движение Н. и.

Количественно соотношения разных фаз развития потенциала действия можно охарактеризовать, сопоставляя их по амплитуде и длительности во времени. Так, напр., для миелиновых нервных волокон группы А млекопитающих диаметр волокна находится в пределах 1-22 мк, скорость проведения - 5-120 м/сек, длительность и амплитуда высоковольтной части (пика, или спайка) - 0,4-0,5 мсек и 100-120 мв соответственно, следовой негативный потенциал - 12-20 мсек (3-5% от амплитуды спайка), следовой позитивный потенциал - 40-60 мсек (0,2% от амплитуды спайка).

Возможности передачи разнообразной информации расширяются за счет повышения скорости развития потенциала действия, скорости распространения, а также за счет повышения лабильности (см.) - т. е. способности возбудимого образования воспроизводить в единицу времени высокие ритмы возбуждения.

Конкретные особенности распространения Н. и. связаны со строением нервных волокон (см.). Сердцевина волокна (аксоплазма) обладает низким сопротивлением и, соответственно, хорошей проводимостью, а окружающая аксоплазму плазматическая мембрана - большим сопротивлением. Особенно велико электрическое сопротивление наружного слоя у миелинизированных волокон, у к-рых свободны от толстой миелиновой оболочки только перехваты Ранвье. В безмиелиновых волокнах Н. и. движется непрерывно, а в миелиновых - скачкообразно (сальтаторное проведение).

Различают декрементное и бездекрементное распространение волны возбуждения. Декрементное проведение, т. е. проведение возбуждения с угасанием, наблюдается в безмиелиновых волокнах. В таких волокнах скорость проведения Н. и. невелика и по мере отдаления от места раздражения раздражающее действие местных токов постепенно уменьшается вплоть до полного угасания. Декрементное проведение свойственно волокнам, иннервирующим внутренние органы, обладающие низкой функц, подвижностью. Без декрементное проведение характерно для миелиновых и тех безмиелиновых волокон, к-рые передают сигналы к органам, обладающим высокой реактивностью (напр., сердечной мышце). При бездекрементном проведении Н. и. проходит весь путь от места раздражения до места реализации информации без затухания.

Максимальная скорость проведения Н. и., зарегистрированная в быстропроводящих нервных волокнах млекопитающих, составляет 120 м/сек. Высокие скорости проведения импульса могут быть достигнуты за счет увеличения диаметра нервного волокна (у безмиелиновых волокон) или за счет повышения степени миелинизации. Распространение одиночного Н. и. само по себе не требует непосредственных энергетических затрат, т. к. при определенном уровне поляризации мембраны каждый участок нервного волокна находится в состоянии готовности к проведению и раздражающий стимул играет роль «спускового курка». Однако восстановление исходного состояния нервного волокна и поддержание его в готовности к проведению нового Н. и. связано с затратой энергии биохимических реакций, протекающих в нервном волокне. Процессы восстановления приобретают большое значение в случае проведения рядов Н. и. При проведении ритмического возбуждения (рядов импульсов) в нервных волокнах приблизительно вдвое возрастает теплопродукция и потребление кислорода, расходуются макроэргические фосфаты и повышается активность Na,K-АТФ-азы к-рую отождествляют с натриевым насосом. Изменение интенсивности протекания различных физ.-хим. и биохимических процессов зависит от характера ритмического возбуждения (продолжительность рядов импульсов и частота их следования) и физиологического состояния нерва. При проведении большого числа Н. и. в высоком ритме в нервных волокнах может накапливаться «метаболический долг» (это находит отражение в увеличении суммарных следовых потенциалов), и тогда процессы восстановления затягиваются. Но и в этих условиях способность нервных волокон проводить Н. и. долгое время остается неизменной.

Передача Н. и. с нервного волокна на мышечное или какой-либо другой эффектор осуществляется через синапсы (см.). У позвоночных животных в подавляющем большинстве случаев передача возбуждения на эффектор происходит при помощи выделения ацетилхолина (нервно-мышечные синапсы скелетной мускулатуры, синаптические соединения в сердце и др.). Для таких синапсов характерно строго одностороннее проведение импульса и наличие временной задержки передачи возбуждения.

В синапсах, в синаптической щели которых сопротивление электрическому току благодаря большой площади контактирующих поверхностей мало, происходит электрическая передача возбуждения. В них нет синаптической задержки проведения и возможно двустороннее проведение. Такие синапсы свойственны беспозвоночным животным.

Регистрация Н. и. нашла широкое применение в биол, исследованиях и клин, практике. Для регистрации используют шлейфные и чаще катодные осциллографы (см. Осциллография). При помощи микроэлектродной техники (см. Микроэлектродный метод исследования) регистрируют Н. и. в одиночных возбудимых образованиях - нейронах и аксонах. Возможности исследования механизма возникновения и распространения Н. и. значительно расширились после разработки метода фиксации потенциала. Этим методом были получены основные данные о ионных токах (см. Биоэлектрические потенциалы).

Нарушение проведения Н. и. происходит при повреждении нервных стволов, напр, при механических травмах, сдавливании в результате разрастания опухоли или при воспалительных процессах. Такие нарушения проведения Н. и. зачастую бывают необратимы. Следствием прекращения иннервации могут быть тяжелые функциональные и трофические расстройства (напр., атрофия скелетных мышц конечностей после прекращения поступления Н. и. вследствие необратимой травмы нервного ствола). Обратимое прекращение проведения Н. и. может быть вызвано специально, в терапевтических целях. Напр., с помощью анестезирующих средств блокируют импульсацию, идущую от болевых рецепторов в ц. н. с. Обратимое прекращение проведения Н. и. вызывает и новокаиновая блокада. Временное прекращение передачи Н. и. по нервным проводникам наблюдается и во время общего наркоза.

Библиография: Бpеже М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Жуков Е. К. Очерки по нервно-мышечной физиологии, Л., 1969; Коннели К. Восстановительные процессы и обмен веществ в нерве, в кн.: Совр, пробл. биофизики, пер. с англ., под ред. Г. М. Франка и А. Г. Пасынского, т. 2, с. 211, М., 1961; Костюк П. Г. Физиология центральной нервной системы, Киев, 1977; Латманизова Л. В. Очерк физиологии возбуждения, М., 1972; Общая физиология нервной системы, под ред. П. Г. Костюка, Л., 1979; Тасаки И. Нервное возбуждение, пер. с англ., М., 1971; Ходжкин А. Нервный импульс, пер. с англ., М., 1965; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975.

Человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?

Так называют волну возбуждения, что распространяется по волокнам как ответ на раздражение нейронов. Благодаря этому механизму обеспечивается передача информации от различных рецепторов к центральной нервной системе. А от неё, в свою очередь, к разным органам (мышцы и железы). А что же этот процесс являет собой на физиологическом уровне? Механизм передачи нервного импульса заключается в том, что мембраны нейронов могут менять свой электрохимический потенциал. И интересующий нас процесс совершается в области синапсов. Скорость нервного импульса может меняться в рамках от 3 до 12 метров за секунду. Более детально о ней, а также о факторах, что на неё влияют, мы ещё поговорим.

Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами - их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования

Если говорить про путь нервного импульса, то необходимо отметить, что волокно покрывается не по всей своей длине. Особенности построения таковы, что сложившуюся ситуацию лучше всего будет сравнить с созданием изолирующих керамических муфт, что плотно нанизываются на стержень электрического кабеля (хотя в данном случае на аксон). Как результат - есть небольшие неизолированные электрические участки, с которых ионный ток может спокойно вытечь из аксона в окружающую среду (или наоборот). При этом раздражается мембрана. Вследствие этого вызывается генерация в участках, что не изолированы. Этот процесс называется перехватом Ранвье. Наличие такого механизма позволяет сделать так, чтобы нервный импульс распространялся значительно быстрее. Давайте об этом поговорим на примерах. Так, скорость проведения нервного импульса в толстом миелинизированном волокне, диаметр которого колеблется в рамках 10-20 микрон, составляет 70-120 метров за секунду. Тогда как у тех, у кого неоптимальная структура, этот показатель меньше в 60 раз!

Где они создаются?

Нервные импульсы возникают в нейронах. Возможность создания таких «посланий» является одним из основных их свойств. Нервный импульс обеспечивает быстрое распространение однотипных сигналов по аксонам на большое расстояние. Поэтому это самое важное средство организма для обмена информацией в нём. Данные о раздражении передаются с помощью изменения частоты их следования. Здесь работает сложная система периодики, которая может насчитывать сотни нервных импульсов в одну секунду. По несколько подобному принципу, хотя и значительно усложненному, работает компьютерная электроника. Так, когда нервные импульсы возникают в нейронах, то они кодируются определённым образом, а только потом уже передаются. При этом информация группируется в специальные «пачки», которые имеют разное число и характер следования. Всё это, сложенное вместе, и составляет основу для ритмической электрической активности нашего мозга, что можно зарегистрировать благодаря электроэнцефалограмме.

Типы клеток

Говоря про последовательность прохождения нервного импульса, нельзя обойти вниманием (нейроны), по которым и происходит передача электрических сигналов. Так, благодаря им обмениваются информацией разные части нашего организма. В зависимости от их структуры и функционала выделяют три типа:

  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Говоря про проведение нервного импульса клетками, сложно не рассказать об одном интересном моменте. Так, когда они находятся в покое, то, скажем так, натриево-калиевый насос занимается перемещением ионов таким образом, чтобы достичь эффекта пресной воды внутри и соленой внешне. Благодаря получаемому дисбалансу разницы потенциалов на мембране можно наблюдать до 70 милливольт. Для сравнения - это 5% от обычных Но как только меняется состояние клетки, то получившееся равновесие нарушается, и ионы начинают меняться местами. Так происходит, когда через неё проходит путь нервного импульса. Благодаря активному действию ионов это действие и называют ещё потенциалом действия. Когда он достигает определённого показателя, то начинаются обратные процессы, и клетка достигает состояния покоя.

О потенциале действия

Говоря про преобразование нервного импульса и его распространение, следует отметить, что оно могло бы составлять жалкие миллиметры в секунду. Тогда бы сигналы от руки до мозга доходили бы за минуты, что явно нехорошо. Вот тут и играет свою роль в усилении потенциала действия рассмотренная ранее оболочка из миелина. А все её «пропуски» размещены таким образом, чтобы они только позитивно сказывались на скорости передачи сигналов. Так, когда импульсом достигается конец основной части одного тела аксона, то он передаётся либо следующей клетке, либо (если говорить о мозге) многочисленным ответвлениям нейронов. Вот в последних случаях работает немного другой принцип.

Как всё работает в мозгу?

Давайте поговорим, какая передаточная последовательность нервного импульса работает в наиболее важных частях нашей ЦНС. Здесь нейроны от своих соседей отделяются небольшими щелями, что называются синапсами. Потенциал действия не может переходить через них, поэтому он ищет иной способ, чтобы попасть к следующей нервной клетке. На конце каждого отростка есть небольшие мешочки, что называются пресинаптическими пузырьками. В каждом из них имеются особые соединения - нейромедиаторы. Когда к ним поступает потенциал действия, то высвобождаются из мешочков молекулы. Они пересекают синапс и присоединяются к особенным молекулярным рецепторам, что расположены на мембране. При этом нарушается равновесия и, вероятно, появляется новый потенциал действия. Достоверно это ещё не известно, нейрофизиологи занимаются изучениями вопроса и по сей день.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека. Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом. Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение - необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности

В статье «нервный импульс» и «потенциал действия» использовались в качестве синонимов. Теоретически это верно, хотя в некоторых случаях необходимо учитывать некоторые особенности. Так, если вдаваться в детали, то потенциал действия является только частью нервного импульса. При детализированном рассмотрении ученых книг можно узнать, что так называют только изменение заряда мембраны с положительного на отрицательный, и наоборот. Тогда как под нервным импульсом понимают сложный структурно-электрохимический процесс. Он распространяется по мембране нейрона как бегущая волна изменений. Потенциал действия - всего лишь электрический компонент в составе нервного импульса. Он характеризирует изменения, что происходят с зарядом локального участка мембраны.

Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик - это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения

Рассказ медицинскими терминами может вызвать непонимание отдельных моментов. Чтобы устранить это, стоит кратко пройтись по изложенным знаниям. В качестве примера возьмем пожар.

Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.

Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель. Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной. Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.

Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла. Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.

Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.

Скорость прохождения импульса зависит от нескольких факторов, например, от толщины волокон, при чем оно толще, тем скорость развивается быстрее. Еще один фактором в повышении скорости проведения, является сам миелин. Но при этом он располагается не по всей поверхности, а участками, как бы нанизывается. Соответственно между этими участками есть те, которые остаются «голыми». По ним происходит утечка тока из аксона.

Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель. Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные. Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.

Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.

Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.

При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.

Законы проведения

В медицине присутствуют четыре основных закона:

  • Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
  • Изолированное проведение раздражения. Возбуждение может передаваться вдоль нервного волокна, никаким образом, не распространяясь на соседние.
  • Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
  • Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.

Химия проведения импульса

Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями. Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов. При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.

Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.

Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.

Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.

В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.

Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР

Читательница журнала Л. Горбунова (деревня Цыбино, Московской области) пишет нам: «Меня интересует механизм, передачи сигналов по нервным, клеткам».

Лауреаты Нобелевской премии 1963 года (слева направо): А. Ходжкин, Э. Хаксли, Д. Экклс.

Представления ученых о механизме передачи нервного импульса претерпели в последнее время существенное изменение. До недавнего времени в науке господствовали взгляды Бернштейна.

Мозг человека, без сомнения, высшее достижение природы. В килограмме нервной ткани заключена квинтэссенция всего человека, начиная от регуляции жизненных функций - работы сердца, легких, пищеварительного тракта, печени - и кончая его духовным миром. Здесь - наши мыслительные способности, всё наше мироощущение, память, разум, наше самосознание, наше «я». Познание механизмов работы мозга - это познание самого себя.

Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.

Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.

Я имею в виду исследование механизма передачи нервных импульсов - сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.

Нервные клетки - основной элемент мозга - разнообразны по величине, по форме, но в принципе обладают единым строением. Каждая нервная клетка состоит из трех частей: из тела, длинного нервного волокна - аксона (длина его у человека от нескольких миллиметров до метра) и нескольких коротких ветвистых отростков - дендритов. Нервные клетки изолированы друг от друга оболочками. Но все же клетки взаимодействуют между собой. Происходит это в месте стыка клеток; этот стык называется «синапс». В синапсе встречаются аксон одной нервной клетки и тело или дендрит другой клетки. Причем интересно, что возбуждение может передаваться только и одном направлении: от аксона к телу или дендриту, но ни в коем случае не обратно. Синапс - это как бы кенотрон: он пропускает сигналы только в одном направлении.

В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки - по волокну и механизм передачи нервного импульса от клетки к клетке - через синапсы.

Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?

Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса - это распространение вдоль по нервному волокну особой биохимической реакции.

И всё же ни одно из этих представлений не оправдалось.

В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.

Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,

Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.

К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом - под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001-0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит - соли калия, а в тканевой жидкости - соли натрия. Внутри большинства клеток концентрация ионов калия в 30-50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.

И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи - плюс (избыток катионов), внутри - минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.

Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.

Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.

Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.

Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949-1953 годах предлагают новую теорию. Она получает название натриевой.

Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.

В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5-10 раз больше, чем внутри нервного волокна.

Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5-10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.

А через какое-то время - после возбуждения - равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.

Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.

Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников - особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.

Тогда общая картина распространения нервного импульса будет иметь следующий вид. В покое молекулы-переносчики, заряженные отрицательно, мембранным потенциалом прижаты к наружной границе мембраны. Поэтому проницаемость для натрия очень мала: в 10-20 раз меньше, чем для ионов калия. Калий может пересекать мембрану через поры. При приближении волны возбуждения уменьшается давление электрического поля на молекулы-переносчики; они сбрасывают свои электростатические «оковы» и начинают переносить ионы натрия внутрь клетки. Это еще больше уменьшает мембранный потенциал. Идет как бы цепной процесс перезарядки мембраны. И этот процесс непрерывно распространяется вдоль нервного волокна.

Интересно, что нервные волокна тратят на свою основную работу - проведение нервных импульсов - всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва - 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.

Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса - вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков - синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.

Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.

Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества - медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны - как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.

Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки - возбуждение и торможение - можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, - вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.

Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода - элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.

Детальное описание иллюстраций

Представления ученых о механизме передачи нервного импульса претерпели в последнее время существенное изменение. До недавнего времени в науке господствовали взгляды Бернштейна. По его мнению, в состоянии покоя (1) нервное волокно заряжено положительно снаружи и отрицательно внутри. Это объяснялось тем, что сквозь поры в стенке волокна могут проходить только положительно заряженные ионы калия (К +); большие по размерам отрицательно наряженные анионы (А –) вынуждены оставаться внутри и создавать избыток отрицательных зарядов. Возбуждение (3) по Бернштейну сводится к исчезновению разности потенциалов, которое вызывается тем, что размер пор увеличивается, анионы выходят наружу и выравнивают ионный баланс: количество положительных ионов становится равным количеству отрицательных. Работа лауреатов Нобелевской премии 1963 года А. Ходжкпна, Э. Хаксли и Д. Экклса изменила наши прежние представления. Доказано, что в нервном возбуждении участвуют также положительные ионы натрия (Na +), отрицательные ноны хлора (Сl –) и отрицательно заряженные молекулы-переносчики. Покоящееся состояние (3) образуется в принципе так же, как и считалось раньше: избыток положительных ионов - снаружи нервного волокна, избыток отрицательных - внутри. Однако установлено, что при возбуждении (4) происходит не выравнивание зарядов, а перезарядка: снаружи образуется избыток отрицательных ионов, а внутри - избыток положительных. Объясняется это тем, что при возбуждении молекулы-переносчики начинают перевозить сквозь стенку положительные ионы натрия. Таким образом, нервный импульс (5) - это перемещающаяся вдоль волокна перезарядка двойного электрического слоя. А от клетки к клетке возбуждение передается своеобразным химическим «тараном» (6) - молекулой ацетилхолина, которая помогает ионам прорываться сквозь стенку соседнего нервного волокна.