Физические характеристики звука кратко. Характеристики слухового ощущения. Защита от шума

10.07.2020 Диеты

Звук как физическое явление характеризуется звуковым давлением P (Па), интенсивностью I (Вт/м 2) и частотой f (Гц).

Звук какфизиологическое явление характеризуется уровнем звука (фоны) и громкостью (сонны).

Распространение звуковых волн сопровождается переносом колебательной энергии в пространстве. Ее количество, проходящее через площадь
1 м 2 , расположенную перпендикулярно направлению распространения звуковой волны, обусловливает интенсивность или силу звука I ,

Вт/м 2 , (7.1)

где Е – поток звуковой энергии, Вт; S – площадь, м 2 .

Ухо человека чувствительно не к интенсивности звука, а к давлению Р , оказываемому звуковой волной, которое определяется по формуле

где F – нормальная сила, с которой звуковая волна действует на поверхность, Н; S – площадь поверхности, на которую падает звуковая волна, м 2 .

Величины интенсивности звука и уровни звукового давления, с которыми приходится иметь дело на практике, изменяются в широких пределах. Колебания звуковых частот могут восприниматься человеческим ухом только при определённой их интенсивности или звуковом давлении. Пороговыезначения звукового давления, при которых звук не воспринимается или звуковое ощущение переходит в болевое ощущение, называются соответственно порог слышимости и порог болевого ощущения.

Порогу слышимости при частоте 1000 Гц соответствует интенсивность звука 10 -12 Вт/м 2 и звуковое давление 2·10 -5 Па. При интенсивности звука 1 Вт/м 2 и звуковом давлении 2·10 1 Па (при частоте 1000 Гц) создается ощущение боли в ушах. Эти уровни называются порогом болевого ощущения и превышают порог слышимости в 10 12 и 10 6 раз, соответственно.

Для оценки шума удобно измерять не абсолютное значение интенсивности и давления, а относительный их уровень в логарифмических единицах, характеризуемый отношением фактически создаваемых интенсивности и давления к их значениям, соответствующим порогу слышимости. По логарифмической шкале увеличение интенсивности и давления звука в 10 раз соответствует приросту ощущения на 1 единицу, названную белом (Б):



, Бел, (7.3)

(9.3)

где I o и Р о - исходные значения интенсивности и звукового давления (интенсивность и давление звука на пороге слышимости).

За исходную цифру 0 (ноль) Бел принята пороговая для слуха величина звукового давления 2·10 -5 Па (порог слышимости или восприятия). Весь диапазон энергии, воспринимаемой слухом как звук, укладывается при этих условиях в 13-14 Б. Для удобства пользуются не белом, а единицей в 10 раз меньшей – децибелом (дБ), которая соответствует минимальному увеличению силы звука, различаемому ухом.

В настоящее время общепринято характеризовать интенсивность шума в уровнях звукового давления, определяемых по формуле

, дБ, (7.4)

где Р - среднеквадратичная величина звукового давления, Па; Р o - исходное значение звукового давления (в воздухе Р o = 2·10 -5 Па).

Третьей важной характеристикой звука, определяющей его высоту, является частота колебаний, измеряемая числом полных колебаний, совершенных в течение 1с (Гц). Частота колебаний определяет высоту звучания: чем больше частота колебаний, тем выше звук. Однако в реальной жизни, в том числе и в условиях производства, мы встречаемся чаще всего со звуками частотой от 50 до 5000 Гц. Орган слуха человека реагирует не на абсолютный, а на относительный прирост частот: возрастание частоты колебаний вдвое воспринимается как повышение тона на определенную величину, называемую октавой. Таким образом, октава – диапазон, в которой верхняя граничная частота равна удвоенной нижней частоте.

Такое допущение связано с тем, что при удвоении частоты высота звука изменяется на одну и ту же величину независимо от того, в каком частотном интервале происходит это изменение. Каждая октавная полоса характеризуется среднегеометрической частотой, определяемой по формуле

где f 1 – нижняя граничная частота, Гц; f 2 – верхняя граничная частота, Гц.

Весь диапазон частот слышимых человеком звуков разбит на октавы со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц.

Распределение энергии по частотам шума представляет собой его спектральный состав. При гигиенической оценке шума измеряют как его интенсивность (силу), так и спектральный состав по частотам.

Восприятие звуков зависит от частоты колебаний. Звуки одинаковые по уровню интенсивности, но разные по частоте, воспринимаются на слух неодинаково громкими. При изменении частоты значительно изменяются уровни интенсивности звука, определяющие порог слышимости. Зависимость восприятия звуков различного уровня интенсивности от частоты иллюстрируют так называемые кривые равной громкости (рис.7.1). Для оценки уровня восприятия звуков разной частоты введено понятие уровня громкости звука,т.е. условное приведение звуков разной частоты, но одинаковой громкости к одному уровню при частоте 1000 Гц.

Рис. 7.1. Кривые равной громкости

Уровень громкости звука – уровень интенсивности (звукового давления) данного звука частотой 1000 Гц, равногромкого с ним на слух. Это означает, что каждой кривой равной громкости соответствует одно значение уровнягромкости (от уровня громкости, равного 0, соответствующего порогу слышимости до уровня громкости, равного 120, соответствующего порогу болевого ощущения). Уровень громкости измеряется во внесистемной безразмерной единице – фон.

Оценка звукового восприятия с помощью уровня громкости, измеряемого в фонах, не даёт полного физиологического представления о действии звука на слуховой аппарат, т.к. увеличение уровня звука на 10 дБ создаёт ощущение увеличения громкости в два раза.

Количественная связь между физиологическим ощущением громкости и уровнем громкости может быть получена из шкалы громкости. Шкала громкости легко образуется с учётом соотношения, что величина громкости в один сонсоответствует уровнюгромкости в 40 фон (рис. 7.2).


Рис. 7.2. Шкала громкости

Длительное воздействие шума высоких уровней интенсивности может влиять на снижение чувствительности слухового анализатора, а также вызывать расстройства нервной системы и оказывать влияние на другие функции организма (нарушает сон, мешает выполнять напряжённую умственную работу), поэтому для разных помещений и различных видов работ устанавливаются различные допустимые уровни шума.

Шум, не превышающий уровень 30-35 дБ, не ощущается как утомительный или заметный. Такой уровень шума является допустимым для читальных залов, больничных палат, жилых комнат ночью. Для конструкторских бюро, конторских помещений допускается уровень шума 50-60 дБ.

Классификация шумов

Производственный шум можно классифицировать по различным признакам.

По происхождению – аэродинамический, гидродинамический, металлический и т.д.

По частотной характеристике – низкочастотный (1-350 Гц), среднечастотный (350-800 Гц), высокочастотный (более 800 Гц).

По спектру – широкополосный (шум с непрерывным спектром шириной более 1 октавы), тональный (шум, в спектре которого имеются выраженные тоны). Широкополосный шум с одинаковой интенсивностью звуков по всем частотам условно обозначают как «белый». Тональный характер шума для практических целей устанавливается измерением в 1/3 октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шумы разделяют на постоянный или стабильный и непостоянный. Постоянный шум – это шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике шумомера "медленно".

Непостоянный шум - это шум, уровень звука которого за 8-часовой рабочий день, за рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА при измерениях на временной характеристике шумомера "медленно".

Непостоянный шум может быть колеблющимся, прерывистым и импульсным:

колеблющийся во времени шум – это шум, уровень звука которого непрерывно изменяется во времени;

прерывистый шум – это шум, уровень звука которого ступенчато изменяется (на 5 дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

импульсный шум – это шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАI и дБА, измеренные соответственно на временных характеристиках "импульс" и "медленно", отличаются не менее чем на 7 дБ.

Для двух последних видов шума (прерывистый и импульсный) характерно резкое изменение звуковой энергии во времени (свистки, гудки, удары кузнечного молота, выстрелы и пр.).

Характеристикой постоянного шума на рабочих местах являются уровни звукового давления в дБ в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, определяемые по формуле (7.4).

Допускается в качестве характеристики постоянного широкополосного шума на рабочих местах принимать уровень звука в дБА, измеренный на временной характеристике "медленно" шумомера, определяемый по формуле:

, дБА, (7.6)

где Р (А) – среднеквадратичная величина звукового давление с учетом коррекции "А" шумомера, Па

Характеристикой непостоянного шума на рабочих местах является эквивалентный (по энергии) уровень звука в дБА.

Эквивалентный (по энергии) уровень звука, L А(экв) , в дБА данного непостоянного шума – уровень звука постоянного широкополосного шума, который имеет то же самое среднее квадратическое звуковое давление, что и данный непостоянный шум в течение определенного интервала времени и который определяют по формуле

, дБА, (7.7)

где р А(t) – текущее значение среднего квадратического звукового давления с учетом коррекции "А " шумомера, Па; p 0 – исходное значение звукового давления (в воздухе p 0 = 2 · 10 -5 Па); T – время действия шума, ч.

Через слух человек получает около 8 % информации.

Шум -- хаотическое сочетание различных по частоте и интенсивности звуков, неблагоприятно воздействующих на организм человека.

Источники шума. Например, в судостроение практически все процессы обработки исходного материала и конечной продукции сопровождаются высоким уровнем шума (на уровне болевого порога и выше) 90…120 дБ (и выше).

Шум прибоя, работа гребных винтов, главных и вспомогательных двигателей и др.

Характеристики звуковых колебаний

Звук -- механические колебания, распространяющиеся в упругих средах (в безвоздушном пространстве не распространяются). Звуковая волна характеризуется:

частотой f, Гц;

скоростью распространения с, м/с;

звуковым давлением Р, Па;

интенсивностью звука I, Вт/м 2 .

Скорость распространения звука в различных средах не одинакова и зависит от плотности материала, температуры, упругости и других свойств.

с стали = 4500…5000 м/с;

с жидк ~ 1500 м/с (в зависимости от солености);

с возд = 340 м/с (при температуре 20°С), 330 м/с (при температуре 0°С)

Звуковое давление -- силовая характеристика, например, для камертона С=Р max sin(2рft + ц 0). Здесь звуковое давление чистого (гармонического) тона.

Интенсивность звука -- энергетическая характеристика, определяется как средняя энергия E в единицу времени ф, отнесенная к единице площади S поверхности, перпендикулярной к направлению распространения волны:

где с плотность воздушной среды кг/м 3 ;

c скорость распространения звука м/с.

Источник звуковых колебаний характеризуется мощностью W, Вт.

Влияние шума на организм человека и его последствия

Шум -- общефизиологический раздражитель с наиболее изученным влиянием.

Интенсивный шум при постоянном воздействии приводит к профессиональному заболеванию -- тугоухости.

Наибольшее влияние шум оказывает при частоте f = 1…4 кГц.

Шум влияет на органы слуха, головной мозг, нервную систему, вызывает повышенную утомляемость, ослабление памяти, следовательно падает производительность труда и создаются предпосылки для возникновения несчастных случаев.

По данным Всемирной организации здравоохранения (ВОЗ) наиболее чувствительны к шуму операции сбора информации, мышления, слежения.

Физиологические характеристики шума

Звук частотой от 20 Гц…11 кГц называется слышимый звук, звук меньше 20 Гц называется инфразвук, а звук более 11 кГц называется ультразвук.

Шум бывает: широкополосный (спектр частоты больше одной октавы) и тональный, где имеет место дискретная частота. Октава- это полоса звука у которой конечная частота в два раза больше начальной.

По временным характеристикам шум бывает: постоянный (изменении уровня звукового давления в течении рабочей смены не более 3дБ) и не постоянной, которая в свою очередь подразделяется на колеблющийся, прерывистый и импульсный. Наиболее опасным по действию на организм человека является тональный и импульсный шум.

Звук или шум возникает при механических колебаниях в твердых, жидких и газообразных средах. Шумом являются различные звуки, мешающие нормальной деятельности человека и вызывающие неприятные ощущения. Звук представляет собой колебательное движение упругой среды, воспринимаемое нашим органом слуха. Звук, распространяющийся в воздушной среде, принято называть воздушным шумом; звук, передающийся по строительным конструкциям, называют структурным. Движение звуковой волны в воздухе сопровождается периодическим повышением и понижением давления. Периодическое повышение давления в воздухе по сравнению с атмосферным в невозмущенной среде называют звуковым давлением р (Па), именно на изменение давления в воздухе реагирует наш орган слуха. Чем больше давление, тем сильнее раздражение органа слуха и ощущение громкости звука. Звуковая волна характеризуется частотой f и амплитудой колебания. Амплитуда колебаний звуковой волны определяет звуковое давление; чем больше амплитуда, тем больше звуковое давление и громче звук. Время одного колебания называют периодом колебаний Т (с): T=1/f.

Расстояние между двумя соседними участками воздуха, имеющими в одно и то же время одинаковое звуковое давление, определяется длиной волны X.

Часть пространства, в котором распространяются звуковые волны называют звуковым полем. Любая точка звукового поля характеризуется определенным звуковым давлением р и скоростью движения частиц воздуха.

Звуки в изотропной среде могут распространяться в виде сферических, плоских и цилиндрических волн. Когда размеры источника звука малы по сравнению с длиной волны, звук распространяется по всем направлениям в виде сферических волн. Если размеры источника больше, чем длина излучаемой звуковой волны, то звук распространяется в виде плоской волны. Плоская волна образуется на значительных расстояниях от источника любых размеров.

Скорость распространения звуковых волн с зависит от упругих свойств, температуры и плотности среды, в которой они распространяются. При звуковых колебаниях среды (например, воздуха) элементарные частички воздуха начинают колебаться около положения равновесия. Скорость этих колебаний v намного меньше скорости распространения звуковых волн в воздухе с.

Скорость распространения звуковой волны (м/с)

C=λ/Т или C=λf

Скорость звука в воздухе при t = 20 °С примерно равна 334, а стали - 5000, в бетоне - 4000 м/с. В свободном звуковом поле, в котором отсутствуют отраженные звуковые волны, скорость относительных колебаний

v = р/ρс,

где р - звуковое давление, Па; ρ - плотность среды, кг/м 3 ; ρс - удельное акустическое сопротивление сред (для воздуха ρс = 410 Па-с/м).

При распространении звуковых волн происходит перенос энергии. Переносимая звуковая энергия определяется интенсивностью звука I . В условиях свободного звукового поля интенсивность звука измеряют средним количеством энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной направлению распространения звука.

Интенсивность звука (Вт/м 2) является векторной величиной и может быть определена из следующей зависимости

I=p 2 /(ρc); I=v∙p:

где р - мгновенное значение звукового давления, Па; v - мгновенное значение колебательной скорости, м/с.

Интенсивность шума (Вт/м 2), проходящего через поверхность сферы радиуса г, равна излучаемой мощности источника W, деленной на площадь поверхности источника:

I= W/(4πr 2).

Эта зависимость определяет основной закон распространения звука в свободном звуковом поле (без учета затухания), согласно которому интенсивность звука уменьшается обратно пропорционально квадрату расстояния.

Характеристикой источника звука является звуковая мощность W (Вт), которая определяет общее количество звуковой энергии, излучаемой всей поверхностью источника S в единицу времени:

где I н - интенсивность потока звуковой энергии в направлении нормали к элементу поверхности.

Если на пути распространения звуковых волн встречается препятствие, то в силу явлений дифракции происходит огибание препятствия звуковыми волнами. Огибание тем больше, чем больше длина волны по сравнению с линейными размерами препятствия. При длине волны меньше размера препятствия наблюдается отражение звуковых волн и образование за препятствием «звуковой тени», где уровни звука значительно ниже по сравнению с уровнем звука, воздействующим на преграду. Поэтому звуки низкой частоты легко огибают препятствия и распространяются на большие расстояния. Это обстоятельство необходимо всегда учитывать при использовании шумозащитных экранов.

В закрытом пространстве (производственном помещении) звуковые волны, отражаясь от преград (стен, потолка, оборудования), образуют внутри помещения так называемое диффузное звуковое поле, где все направления распространения звуковых волн равновероятны.

Разложение шума на составляющие его тона (звуки с одной частотой) с определением их интенсивностей называют спектральным анализом, а графическое изображение частотного состава шума - спектром. Для получения частотных спектров шумов производят измерение уровней звукового давления на различных частотах с помощью шумо-мера и анализатора спектра. По результатам этих измерений на фиксированных стандартных среднегеометрических частотах 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц строят спектр шума.

На рис! 11.1, а...г приведены графики звуковых колебаний в координатах (уровень звукового давления - время). На рис. 11.1, д...з изображены соответственно спектры звука в координатах (уровень звукового давления - частота). Частотный спектр сложного колебания, состоящего из множества простых тонов (колебаний), представлен рядом прямых линий разной высоты, построенных на различных частотах.

Рис. 11.1. Графики звуковых колебаний соответствующие им спектры звука.

Орган слуха человека способен воспринимать значительный диапазон интенсивностей звука - от едва различимых (на пороге слышимости) до звуков на пороге болевого ощущения. Интенсивность звука на грани болевого порога в 10 16 раз превышает интенсивность звука на пороге слышимости. Интенсивность звука (Вт/м 2) и звуковое давление (Па) на пороге слышимости для звука с частотой 1000 Гц соответственно составляют I 0 =10 -12 и p о = 2∙.1О -5 .

Практическое использование абсолютных значений акустических величин, например, для графического представления распределения звукового давления и интенсивностей звука по частотному спектру неудобно из-за громоздких графиков. Кроме того, важно учитывать факт реагирования органа слуха человека на относительное изменение звукового давления и интенсивности по отношению к пороговым величинам. Поэтому в акустике принято оперировать не абсолютными величинами интенсивности звука или звукового давления, а их относительными логарифмическими уровнями L, взятыми по отношению к пороговым значениям ρ о или I 0 .

За единицу измерения уровня интенсивности звука принят один бел (Б). Бел - это десятичный логарифм отношения интенсивности звука I к пороговой интенсивности. При I/I 0 =10 уровень интенсивности звука L =1B, при I/I 0 =100 L = 2Б; при I/I 0 =1000 L = 3Б и т. д.

Однако ухо человека четко различает изменение уровня звука на 0,1 Б. Поэтому в практике акустических измерений и расчетов пользуются величиной 0,1 Б, которая названа децибелом (дБ). Следовательно, уровень интенсивности звука (дБ) определяется зависимостью

L=10∙lgI/I 0 .

Так как I = Р 2 /ρс, то уровень звукового давления (дБ) вычисляют по формуле

L = 20lgP/P 0 .

Орган слуха человека и микрофоны шумомеров чувствительны к изменению уровня звукового давления, поэтому нормирование шумов и градация шкал измерительных приборов осуществляется по уровню звукового давления (дБ). В акустических измерениях и расчетах пользуются не пиковыми (максимальными) значениями параметров I; Р; W, а их среднеквадратичными значениями, которые при гармонических колебаниях в раз меньше максимальных. Введение среднеквадратичных величин определяется тем, что они непосредственно отражают количество энергии, содержащейся в соответствующих сигналах, получаемых в измерительных приборах, а также и тем, что орган слуха человека реагирует на изменение среднего квадрата звукового давления.

В производственном помещении находятся обычно несколько источников шума, каждый из которых оказывает влияние на общий уровень шума. При определении уровня звука от нескольких источников пользуются специальными зависимостями, так как уровни звука складываются не арифметически. Например, если каждая из двух виброплощадок создает шум в 100 дБ, то суммарный уровень шума при их работе будет 103 дБ, а не 200 дБ.

Два одинаковых источника совместно создают уровень шума на 3 дБ больше, чем уровень каждого источника.

Суммарный уровень шума от п одинаковых по уровню шума источников в точке, равноудаленной от них, определяют по формуле

L сум =L+10lg n

где L - уровень шума одного источника.

Суммарный уровень шума в расчетной точке от произвольного числа источников разной интенсивности определяют по уравнению

где L 1 , ..., L n - уровни звукового давления или уровни интенсивности, создаваемые каждым из источников в расчетной точке.

11.2. ДЕЙСТВИЕ ШУМА

НА ОРГАНИЗМ ЧЕЛОВЕКА. ДОПУСТИМЫЕ УРОВНИ ШУМА

С физиологической точки зрения шумом является любой звук, неприятный для восприятия, мешающий разговорной речи и неблагоприятно влияющий на здоровье человека. Орган слуха человека реагирует на изменение частоты, интенсивности и направленности звука. Человек способен различать звуки в диапазоне частот от 16 до 20 000 Гц. Границы восприятия звуковых частот неодинаковы для различных людей; они зависят от возраста и индивидуальных особенностей. Колебания с частотой ниже 20 Гц (инфразвук) и с частотой свыше 20 000 Гц (ультразвук), хотя и не вызывают слуховых ощущений, но объективно существуют и производят специфическое физиологическое воздействие на организм человека. Установлено, что длительное воздействие шума вызывает в организме различные неблагоприятные для здоровья изменения.

Объективно действие шума проявляется в виде повышенного кровяного давления, учащенного пульса и дыхания, снижения остроты слуха, ослабление внимания, некоторого нарушения координации движения и снижения работоспособности. Субъективно действие шума может выражаться в виде головной боли, головокружения, бессонницы, общей слабости. Комплекс изменений, возникающих в организме под влиянием шума, в последнее время медиками рассматривается как «шумовая болезнь».

Медико-физиологические исследования показали, например, что при выполнении сложных работ в помещении с уровнем шума 80...90 дБА рабочий в среднем должен затратить на 20% больше физических и нервных усилий, чтобы иметь производительность труда, достигаемую при шуме 70 дБА. В среднем можно считать, что снижение уровня шума на 6... 10 дБА ведет к росту производительности труда на 10... 12%.

При поступлении на работу с повышенным уровнем шума рабочие должны пройти медицинскую комиссию с участием отоларинголога, невропатолога, терапевта. Периодические осмотры работающих в шумных цехах должны производиться в следующие сроки: при превышении уровня шума в любой октавной полосе на 10 дБ - 1 раз в три года; от 11 до 20 дБ- 1 раз и два года; свыше 20 дБ - 1 раз в год. На работу в шумные цехи не принимаются лица моложе 18 лет, и рабочие, страдающие пониженным слухом, отосклерозом, нарушением вестибулярной функции, неврозом, заболеванием центральной нервной системы, сердечнососудистыми заболеваниями.

Основой нормирования шума является ограничение звуковой энергии, воздействующей на человека в течение рабочей смены, значениями, безопасными для его здоровья и работоспособности. Нормирование учитывает различие биологической опасности 4 шума в зависимости от спектрального состава и временных характеристик и производится в соответствии с ГОСТ 12.1.003-83. По характеру спектра шумы подразделяются: на широкополосные с излучением звуковой энергии непрерывным спектром шириной более одной октавы; тональные с излучением звуковой энергии в отдельных тонах.

Нормирование осуществляется двумя методами: 1) по предельному спектру шума; 2) по уровню звука (дБА), измеренного при включении корректировочной частотной характеристики «А» шумомера. По предельному спектру нормируются уровни звукового давления в основном для постоянных шумов в стандартных октав-ных полосах частот со среднегеометрическими частотами 63; 125; 250; 500; 1000; 2000; 4000; 8000 гц.

Уровни звукового давления на рабочих местах в нормируемом частотном диапазоне не должны превышать значений, указанных в ГОСТ 12.1.003- 83. Для приближенной оценки шума можно пользоваться характеристикой шума в уровнях звука в дБА (при включении корректирующей характеристики шумомера «А»), при которой чувствительность всего шумоизмерительного тракта соответствует средней чувствительности органа слуха человека на различных частотах спектра.

Нормирование учитывает большую биологическую опасность тонального и импульсного шума путем ввода соответствующих поправок.

Нормативные данные по октавным уровням звукового давления в дБ, уровням звука в дБА для производственных предприятий и транспортных средств приводятся в ГОСТ 12.1003- 83. Для жилых и общественных зданий нормирование производится по СН 3077-84 «Санитарные нормы допустимого шума в помещениях жилой застройки, общественных зданий и на территории жилой застройки».

11.3. ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ШУМА

Для измерения уровня шума применяют шумомеры, основными элементами которых являются микрофон, преобразующий звуковые колебания воздушной среды в электрические, усилитель и стрелочный или цифровой индикатор. Современные объективные шумомеры имеют корректирующие частотные характеристики «А» и «Лин». Линейная характеристика (Лин) используется при измерениях уровней звукового давления в октавных полосах 63...8000 Гц, когда шумомер имеет одинаковую чувствительность по всему частотному диапазону. Для того чтобы показания шумомера приближались к субъективным ощущениям громкости, используется характеристика шумомера «А», которая примерно соответствует чувствительности органа слуха при разной громкости. Диапазон измеряемых шумомерами уровней шума 30...140 дБ.

Частотный анализ шума производится шумомером с присоединенным анализатором спектра, который представляет собой набор акустических фильтров, каждый из которых пропускает узкую полосу частот, определяемую верхней и нижней границей октавной полосы. Для получения высокоточных результатов в производственных условиях регистрируется лишь уровень звука в дБА, а спектральный анализ производится по магнитофонной записи шума, которая расшифровывается на стационарной аппаратуре.

В дополнение к основным приборам (шумомеру и анализатору) используются самописцы, записывающие на бумажную ленту распределение уровней шума по частотам спектра, и спектрометр, позволяющий представить анализируемый процесс на экране. Эти приборы фиксируют практически мгновенную спектральную картину шума.

11.4. СРЕДСТВА И МЕТОДЫ ЗАЩИТЫ ОТ ШУМА

Разработка мероприятий по борьбе с производственным шумом должна начинаться на стадии проектирования технологических процессов и машин, разработки плана производственного помещения и генерального плана предприятия, а также технологической последовательности операций. Этими мероприятиями могут быть: уменьшение шума в источнике возникновения; снижение шума на путях его распространения; архитектурно-планировочные мероприятия; совершенствование технологических процессов и машин; акустическая обработка помещений.

Уменьшение шума в источнике возникновения является наиболее эффективным и экономичным. В каждой машине (электродвигатель, вентилятор, виброплощадка) в результате колебаний (соударений) как всей машины, так и составляющих ее деталей (зубчатых передач, подшипников, валов, шестерен) возникают шумы механического, аэродинамического и электромагнитного происхождения.

При работе различных механизмов снизить шум на 5...10 дБ можно путем: устранения зазоров в зубчатых передачах и соединениях деталей с подшипниками; применения глобоидных и шевронных соединений; широкого использования пластмассовых деталей. Шум в подшипниках качения и зубчатых передачах уменьшается также при снижении частоты вращения и нагрузки. Часто повышенные уровни шума возникают при несвоевременном ремонте оборудования, когда ослабляется крепление деталей и образуется недопустимый износ деталей. Снижение шума вибрационных машин достигается посредством: уменьшения площади вибрирующих элементов; замены зубчатых и цепных передач на клиноременные или гидравлические; замены подшипников качения на подшипники скольжения, там, где это не вызывает значительного повышения расхода энергии (снижение шума до 15 дБ); повышения эффективности виброизоляции, так как снижение уровня вибрации деталей всегда приводит к уменьшению шума; снижения интенсивности процесса виброформирования за счет некоторого увеличения времени вибрирования.

Снизить шумы аэродинамического и электромагнитного происхождения часто можно только уменьшением мощности или рабочих скоростей машины, что неизбежно приведет к снижению производительности или нарушению технологического процесса. Поэтому во многих случаях, когда существенного уменьшения шума в источнике не удалось достичь, используют методы " Снижения 1 шума на путях его распространения, т. е. применяют шумозащитные кожухи, экраны, глушители аэродинамического шума.

Архитектурно-планировочные мероприятия предусматривают меры защиты от шума, начиная с разработки генерального плана предприятия строительной индустрии и плана цеха. Наиболее шумные и вредные производства рекомендуется компоновать в отдельные комплексы с обеспечением разрывов между ближайшими соседними объектами согласно Санитарным нормам СН 245-71. При планировке помещений внутри производственных и вспомогательных зданий нужно предусматривать максимально возможное удаление малошумных помещений от помещений с «шумным» технологическим оборудованием.

Рациональной планировкой производственного помещения можно добиться ограничения распространения шума, уменьшения числа рабочих, подверженных действию шума. Например, при расположении виброплощадок или шаровых мельниц в помещении, изолированном от других участков цеха, достигается резкое снижение уровня производственного шума и улучшение условий труда для большинства рабочих. Облицовку стен, потолка производственного помещения звукопоглощающими материалами следует применять в комплексе с другими методами уменьшения шума, так как только акустической обработкой помещения можно добиться снижения шума в среднем на 2...3 дБА. Такое снижение шума, как правило, недостаточно для создания в производственном помещении благоприятной шумовой обстановки.

К технологическим мероприятиям по борьбе с шумом относится выбор таких технологических процессов, в которых используются механизмы и машины, возбуждающие минимальные динамические нагрузки. Например, замена машин, использующих вибрационный метод уплотнения бетонной смеси (виброплощадка и т. д.), машинами с применением безвибрационной технологии изготовления железобетонных изделий, когда формование изделий осуществляется прессованием или нагнетанием под давлением бетонной смеси в форму.

Для защиты работающих в производственных помещениях с шумным оборудованием, применяются: звукоизоляция вспомогательных помещений, смежных с шумным производственным участком; кабины наблюдения и дистанционного управления; акустические экраны и звукоизолирующие кожухи; обработка стен и потолка звукоизолирующими облицовками или применение штучных поглотителей; звукоизолирующие кабины и укрытия для регламентированного отдыха работников шумных постов; вибродемпфирующие покрытия на корпуса и кожухи виброактивных машин и установок; виброизоляция виброактивных машин на основе различных систем амортизации.

В необходимых случаях меры коллективной защиты дополняются применением средств индивидуальной защиты от шума в виде различных наушников, вкладышей, шлемов.

11.5. ЗВУКОИЗОЛЯЦИЯ

Шум, распространяющийся по воздуху, может быть существенно снижен посредством устройства на его пути звукоизолирующих преград в виде стен, перегородок, перекрытий, специальных звукоизолирующих кожухов и экранов. Сущность звукоизоляции ограждения состоит в том, что наибольшая часть падающей на него звуковой энергии, отражается и только незначительная часть его.проникает через ограждение. Передача звука через ограждение осуществляется следующим образом: падающая на ограждение звуковая волна приводит его в колебательное движение с частотой, равной частоте колебаний воздуха в волне. Колеблющееся ограждение становится источником звука и излучает его и изолируемое помещение. Передача звука из помещения с источником шума в смежное помещение происходит по трем направлениям: 1 - через щели и отверстия; 2 - вследствие колебания преграды; 3 -через прилегающие конструкции (структурный шум) (рис. 11.2). Количество прошедшей звуковой энергии растет с увеличением амплитуды колебаний ограждения. Поток звуковой энергии

А при встрече с преградой частично отражается у4 отр, частично поглощается в порах материала преграды А погл и частично проходит за преграду за счет ее колебаний А прош - Количество отраженной, поглощенной и прошедшей звуковой энергии характеризуется коэффициентами: звукоотражения β=А отр /А; звукопоглощения α=А погл /А; звукопроводимости τ=A прош /А. По закону сохранения энергии α+β+τ=1. Для большинства применяемых строительных облицовочных материалов α= О,1 ÷0,9 на частотах 63...8000 Гц. Приближенно звукоизолирующие качества ограждения оцениваются по коэффициенту, звукопроводимости т. Для случая диффузного звукового поля значение собственной звукоизоляции ограждения R (дБ) определяется зависимостью

Звукоизоляция однослойных ограждений. Звукоизолирующие ограждающие конструкции принято называть однослойными, если они выполнены из однородного строительного материала или составлены из нескольких слоев различных материалов, жесткр (по всей поверхности) скрепленных между собой, или из материалов с сопоставимыми акустическими свойствами (например, слой кирпичной кладки и штукатурки). Рассмотрим характеристику звукоизоляции однослойного ограждения в трех частотных диапазонах (рис. 11.3). На низких частотах, порядка 20...63 Гц (частотный диапазон явлениями. Области резонансных колебаний ограждений зависят от жесткости и массы звукоизоляция ограждения определяется возникающими в нем резонансными ограждения, свойств материала. Как правило, собственная частота большинства строительных однослойных перегородок ниже 50 Гц. В первом частотном диапазоне рассчитать звукоизоляцию пока не удается. Однако определение звукоизоляции в этом диапазоне не имеет принципиального значения, так как нормирование уровней звукового давления начинается с частоты 63 Гц. Практически звукоизоляция ограждения в этом диапазоне незначительна вследствие относительно больших колебаний ограждения вблизи первых частот собственных колебаний, что графически изображено в виде провалов звукоизоляции в первом частотном диапазоне.


Рис. 11.2. Пути передачи звука из шумного помещения в смежное


(Z~3)f 0 0,5f Kp №

Рис. 11.3. Звукоизоляция однослойного ограждения в зависимости от частоты звука I),


На частотах, в 2...3 раза превышающих собственную частоту ограждения (частотный диапазон II), звукоизоляция определяется массой единицы площади ограждения. Жесткость ограждения в диапазоне II не влияет существенно на звукоизоляцию. Изменение звукоизоляции можно достаточно точно рассчитать по так называемому закону «массы»:

R = 20 lg mf - 47,5 ,

где R - звукоизоляция, дБ; т - масса 1 м 2 ограждения, кг; f - частота звука, Гц.

В частотном диапазоне II звукоизоляция зависит только от массы и частоты падающих звуковых волн. Здесь звукоизоляция возрастает на 6 дБ при каждом удвоении массы ограждения или частоты звука (т. е. 6 дБ на каждую октаву).

В частотном диапазоне III проявляется пространственный резонанс ограждения, при котором звукоизоляция резко уменьшается. Начиная с некоторой частоты звука f> 0,5f кр , амплитуда колебаний ограждения резко возрастает. Это явление происходит вследствие совпадения частоты вынужденных колебаний (частоты падающей звуковой волны) с частотой колебаний

ограждения. В данном случае происходит совпадение геометрических размеров и фазы колебаний ограждения с проекцией звуковой волны на ограждение. Проекция падающей на ограждение звуковой волны равна длине волны изгиба ограждения при совпадении фазы и частоты этих колебаний. В рассматриваемом диапазоне проявляется эффект волнового совпадения, в результате чего амплитуда колебаний волн изгиба ограждения возрастает, а звукоизоляция в начале диапазона резко падает. Изменение звукоизоляции здесь не поддается точному расчету. Наименьшую частоту звука (Гц), при которой становится возможным явление волнового совпадения, называют критической и вычисляют по формуле

где h - толщина ограждения, см; ρ - плотность материала, кг/м 3 ; Е - динамический модуль упругости материала ограждения, МПа.

На частоте звука выше критической существенное значение приобретает жесткость ограждения и внутреннее трение в материале. Рост звукоизоляции при f>f кр приближенно составляет 7,5 дБ при каждом удвоении частоты.

Приведенное выше значение собственной звукоизолирующей способности ограждения показывает, на сколько децибел снижается уровень шума за преградой, если предположить, что затем звуки распространяются беспрепятственно, т. е. отсутствуют другие преграды. При передаче шума из одного помещения в другое, в последнем уровень шума будет зависеть от эффекта многократных отражений звука от внутренних поверхностей. При высокой отражательной способности внутренних поверхностей будет проявляться «гулкость» помещения и уровень звука в нем будет больше (чем при отсутствии отражения) и, следовательно, будет ниже его фактическая звукоизоляция R ф. Звукопоглощением поверхностей ограждения помещения на заданной частоте является величина, рав-ная произведению площадей ограждения помещения S на ее коэффициенты звукопоглощения α ;

S экв =∑Sα

R ф =R+10 lg S экв /S

где S экв - эквивалентная площадь звукопоглощения изолируемого помещения, м 2 ; S - площадь изолирующей перегородки, м 2 .

Принцип звукоизоляции практически реализуется путем устройства звукоизолирующих стен, перекрытий, кожухов, кабин наблюдения. Звукоизолирующие строительные перегородки снижают уровень шума в смежных помещениях на 30...50 дБ.

Звукоизолирующие кожухи устанавливают как на отдельные механизмы (например, привод машины), так и на машину в целом. Конструкция кожуха многослойная: внешняя оболочка изготовлена из металла, дерева и покрытия упруговязким материалом (резина, пластмассы) для ослабления изгибных колебаний; внутренняя поверхность облицована звукопоглощающим материалом. Валы и коммуникации, проходящие через стенки кожуха, снабжают уплотнениями, а вся конструкция кожуха должна плотно закрывать источник шума. Для исключения передачи вибраций от основания кожух

Рис. 11.4. Звукоизолирующий кожух:1- отверстие для отвода тепла; 2- упруговязкий материал; 3- корпус; 4- звукопоглощающий материал; 5- виброизолятор

устанавливают на виброизоляторы, кроме того, в стенках кожуха предусматривают вентиляционные каналы для отвода теплоты, поверхность, которых облицовывают звукопоглощающим материалом (рис. 11.4).

Требуемую звукоизоляцию воздушного шума (дБ) стенками кожуха в октавных полосах определяют по формуле

R тр =L-L доп -10lg α обл +5

где L - октавный уровень звукового давления (получен по результатам измерений), дБ; L доп - допустимый октавный уровень звукового давления на рабочих местах (по ГОСТ 12.1.003- 83), дБ; α - реверберационный коэффициент звукопоглощения внутренней облицовки кожуха, определяемый по СНиП II-12-77. Рассчитанная по данному СНиПу звукоизолирующая способность металлического кожуха толщиной 1,5 мм представлена на рис. 11.5.

Для защиты от шума операторов бетоносмесительных узлов, дозаторных установок пульт управления располагают в звукоизолирующей кабине, снабженной смотровым окном с 2- и 3-слойным остеклением, герметичными дверями и специальной системой вентиляции.

От воздействия прямого звука операторы машин защищаются при помощи экранов, которые располагаются между источником шума и рабочим местом. Ослабление шума зависит от геометрических размеров экрана и длин волн звука. Когда размеры экрана больше длины звуковой волны, то за экраном образуется звуковая тень, где звук значительно ослаблен. Применение экранов оправдано для защиты от высоко и среднечастотных шумов

Рис 11,5 График звукоизоляции кожуха на стандартных частотах

Многослойные звукоизолирующие ограждения. Для уменьшения массы ограждений и повышения их звукоизолирующей способности часто применяют многослойные ограждения. Пространство между слоями заполняется пористо-волокнистыми материалами или оставляется воздушный промежуток шириной 40...60 мм. Стенки ограждения не должны иметь жестких связей, а их изгибная жесткость должна быть различной, что достигается применением стенок неодинаковой толщины с оптимальным отношением 2/4. На звукоизоляционные качества многослойного ограждения влияют масса слоя ограждения т 1 и m 2 , жесткость связей K, толщина воздушного промежутка или слоя пористого материала (рис. 11.6).

Под действием переменного звукового давления первый слой многослойной преграды начинает колебаться и эти колебания передаются упругому материалу, заполняющему промежуток между слоями. Благодаря виброизолирующим свойствам заполнителя колебания второго слоя ограждения будут значительно ослаблены, а следовательно, и шум, возбуждаемый колебаниями второго слоя преграды, будет существенно снижен. Чем больше жесткость материала, заполняющего промежуток между слоями, тем ниже звукоизоляция многослойного ограждения.

W

Щ//////////////А

щ к
m 2

У//////////Ш////,

Рис. 11.6. Принципы звукоизоляции многослойными ограждениями

Теоретически звукоизоляция двухслойного ограждения может составлять 70...80 дБ, но за счет косвенных путей распространения звука (через примыкающие конструкции) практическая звукоизоляция двойного ограждения не превышает 60 дБ. Для уменьшения косвенной передачи звука необходимо стремиться к предотвращению распространения изгибных волн по примыкающим конструкциям. С этой целью ограждение целесообразно виброизолировать с помощью упругих элементов.

Отверстия и щели в ограждениях значительно уменьшают звукоизолирующий эффект. Величина снижения звукоизоляции зависит от отношения размеров отверстий к длине падающей звуковой волны, от взаимного расположения отверстий. При размере отверстия d, большем длины волны λ, звуковая энергия, прошедшая через отверстие, пропорциональна его площади. Отверстия оказывают тем большее влияние на снижение звукоизоляции, чем выше собственная звукоизоляция ограждения. Небольшие отверстия d≤λ в случае диффузного звукового поля оказывают значительное влияние на снижение звукоизоляции. Отверстия в виде узкой щели приводят к большему снижению звукоизоляции (на несколько децибел), чем круглые отверстия равной площади.

11.6. ЗВУКОПОГЛОЩЕНИЕ

Звукопоглощение - это свойство строительных материалов и конструкций поглощать энергию звуковых колебаний. Поглощение звука связано с преобразованием энергии звуковых колебаний в теплоту вследствие потерь на трение в каналах звукопоглощающего материала. Звукопоглощение материала характеризуется коэффициентом звукопоглощения α, который равен отношению звуковой энергии, поглощенной материалом, к падающей звуковой энергии. К звукопоглощающим относятся материалы с α> 0,2.Облицовка внутренних поверхностей производственных помещений звукопоглощающими материалами обеспечивает снижение шума на 6...8 дБ в зоне отраженного звука и на 2...3 дБ в зоне прямого шума. В дополнение к облицовке помещений используют штучные звукопоглотители, представляющие собой объемные звукопоглощающие тела различной формы, свободно и равномерно подвешиваемые в объеме помещения. Звукопоглощающие облицовки размещают на потолке и верхних частях стен. Максимальное звукопоглощение можно получить при облицовке не менее 60 % общей площади ограждающих поверхностей помещения, причем наибольшая эффективность достигается в помещениях высотой 4...6 м. Снижение уровня звукового давления в акустически обработанном помещении в зоне отраженного звука рассчитывают по формуле

∆L = 20lgB 2 /B l

где В 1 и В 2 - постоянные помещения до и после акустической обработки его, определяемые по СНиП II-12-77

B 1 =B 1000 μ

где B 1000 - постоянная помещения, м 2 , на среднегеометрической частоте 1000 Гц, определяемая в зависимости от объема помещения V, (см. ниже); μ - частотный множитель, определяемый по табл. 1.11.

По найденной постоянной помещения В 1 для каждой октавной полосы вычисляют эквивалентную площадь звукопоглощения (м 2):

А=В 1 /(В 1 /S+1)

где S - общая суммарная площадь ограждающих поверхностей помещения, м 2 .

Зона отраженного звука определяется предельным радиусом r пр (м) - расстояния от источника шума, на котором уровень звукового давления отраженного звука равен уровню звукового давления, излучаемого данным источником.

Когда в помещении находится п одинаковых источников шума, то

B 8000 - постоянная перемещения на частоте 8000 Гц;

В 8000 =B 1000 μ 8000

Постоянная помещения В 2 (м 2) в акустически обработанном помещении определяется по зависимости

B 2 =(A′+∆A)/(1-α 1)

где A′=α{S -S обл)-эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой, м 2 ; α - средний коэффициент звукопоглощения в помещении до его акустической обработки;

Лабораторная работа №5

Аудиометрия

Студент должен знать : что называется звуком, природу звука, источники звука; физические характеристики звука (частота, амплитуда, скорость, интенсивность, уровень интенсивности, давление, акустический спектр); физиологические характеристики звука (высота, громкость, тембр, минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости, порог болевого ощущения) их связь с физическими характеристиками звука; слуховой аппарат человека, теории восприятия звука; коэффициент звукоизоляции; акустический импеданс, поглощение и отражение звука, коэффициенты отражения и проникновения звуковых волн, реверберация; физические основы звуковых методов исследования в клинике, понятие об аудиометрии.

Студент должен уметь: с помощью звукового генератора снимать зависимость порога слышимости от частоты; определять минимальную и максимальную, воспринимаемые Вами частоты колебаний, снимать аудиограмму с помощью аудиометра.

Краткая теория

Звук. Физические характеристики звука.

Звуком называются механические волны с частотой колебаний частиц упругой среды от 20 Гц до 20000 Гц, воспринимаемые человеческим ухом.

Физическими называют те характеристики звука, которые существуют объективно. Они не связаны с особенностями ощущения человеком звуковых колебаний. К физическим характеристикам звука относятся частота, амплитуда колебаний, интенсивность, уровень интенсивности, скорость распространения звуковых колебаний, звуковое давление, акустический спектр звука, коэффициенты отражения и проникновения звуковых колебаний и др. Кратко рассмотрим их.

1. Частота колебаний . Частотой звуковых колебаний называется число колебаний частиц упругой среды (в которой распространяются звуковые колебания) в единицу времени. Частота звуковых колебаний лежит в пределах 20 - 20000 Гц. Каждый конкретный человек воспринимает определенный диапазон частот (обычно несколько выше 20 Гц и ниже 20000 Гц).

2. Амплитудой звукового колебания называется наибольшее отклонение колеблющихся частиц среды (в которой распространяется звуковое колебание) от положения равновесия.

3. Интенсивностью звуковой волны (или силой звука ) называется физическая величина, численно равная отношению энергии, переносимой звуковой волной в единицу времени через единицу площади поверхности, ориентированной перпендикулярно вектору скорости звуковой волны, то есть:

где W - энергия волны, t - время переноса энергии через площадку площадью S .

Единица интенсивности: [I ] = 1Дж/(м 2 с) = 1Вт/м 2 .

Обратим внимание на то, что энергия и соответственно интенсивность звуковой волны прямо пропорциональны квадрату амплитуды «А » и частоты «ω » звуковых колебаний:

W ~ A 2 и I ~ A 2 ; W ~ ω 2 и I ~ ω 2 .

4. Скоростью звука называется скорость распространения энергии звукового колебания. Для плоской гармонической волны фазовая скорость (скорость распространения фазы колебания (фронта волны), например, максимума или минимума, т.е. сгустка или разряжения среды) равна скорости волны. Для сложного колебания (по теореме Фурье можно представить в виде суммы гармонических колебаний) вводится понятие групповой скорости – скорость распространения группы волн, с которой переносится энергия данной волной.

Скорость звука в любой среде можно найти по формуле:

где Е - модуль упругости среды (модуль Юнга), r - плотность среды.

С увеличением плотности среды (например, в 2 раза) модуль упругости Е возрастает в большей степени (более чем в 2 раза), поэтому с увеличением плотности среды скорость звука возрастает. Например, скорость звука в воде равна ≈ 1500 м/с, в стали - 8000 м/с.

Для газов формулу (2) можно преобразовать и получить в следующем виде:

(3)

где g = С Р / С V - отношение молярных или удельных теплоемкостей газа при постоянном давлении (С Р ) и при постоянном объеме (С V ).

R - универсальная газовая постоянная (R=8,31 Дж/моль·К );

Т - абсолютная температура по шкале Кельвина (T=t o C+273 );

М - молярная масса газа (для нормальной смеси газов воздуха

М=29×10 -3 кг/моль ).

Для воздуха при Т=273К и нормальном атмосферном давлении скорость звука равна υ=331,5 » 332 м/с . Следует заметить, что интенсивность волны (векторная величина) часто выражают через скорость волны :

или ,(4)

где S×l - объем, u=W/ S×l - объемная плотность энергии. Вектор в уравнении (4) называют вектором Умова .

5. Звуковым давлением называется физическая величина, численно равная отношению модуля силы давления F колеблющихся частиц среды, в которой распространяется звук, к площади S перпендикулярно ориентированной площадки по отношению к вектору силы давления.

P = F/S [P ]= 1Н/м 2 = 1Па (5)

Интенсивность звуковой волны прямо пропорциональна квадрату звукового давления:

I = Р 2 /(2r υ) , (7)

где Р - звуковое давление, r - плотность среды, υ - скорость звука в данной среде.

6.Уровень интенсивности . Уровнем интенсивности (уровнем силы звука) называется физическая величина, численно равная:

L=lg(I/I 0) , (8)

где I - интенсивность звука, I 0 =10 -12 Вт/м 2 - наименьшая интенсивность, воспринимаемая человеческим ухом на частоте 1000 Гц.

Уровень интенсивности L , исходя из формулы (8), измеряют в белах (Б). L = 1 Б , если I=10I 0 .

Максимальная интенсивность, воспринимаемая человеческим ухом I max =10 Вт/м 2 , т.е. I max / I 0 =10 13 или L max =13 Б.

Чаще уровень интенсивности измеряют в децибелах (дБ ):

L дБ =10 lg(I/I 0) , L=1 дБ при I=1,26I 0 .

Уровень силы звука можно находить через звуковое давление.

Так как I ~ Р 2 , то L(дБ) = 10lg(I/I 0) = 10 lg(P/P 0) 2 = 20 lg(P/P 0) , где P 0 = 2×10 -5 Па (при I 0 =10 -12 Вт/м 2).

7.Тоном называется звук, являющийся периодическим процессом (периодические колебания источника звука совершаются не обязательно по гармоническому закону). Если источник звука совершает гармоническое колебание x=ASinωt , то такой звук называют простым или чистым тоном. Негармоническому периодическому колебанию соответствует сложный тон, который можно по теореме Фурьне представить в виде совокупности простых тонов с частотами n о (основной тон) и 2n о , 3n о и т.д., называемых обертонами с соответствующими амплитудами.

8.Акустическим спектром звука называется совокупность гармонических колебаний с соответствующими частотами и амплитудами колебаний, на которые можно разложить данный сложный тон. Спектр сложного тона линейчатый, т.е. частоты n о, 2n о и т.д.

9. Шумом (звуковым шумом) называют звук, который представляет собой сложные, неповторяющиеся во времени колебания частиц упругой среды. Шум представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума состоит практически из любых частот звукового диапазона, т.е. акустический спектр шума - сплошной.

Звук может быть и в виде звукового удара. Звуковой удар - это кратковременное (обычно интенсивное) звуковое воздействие (хлопок, взрыв и т.п.).

10.Коэффициенты проникновения и отражения звуковой волны. Важной характеристикой среды, определяющей отражение и проникновение звука является волновое сопротивление (акустический импеданс) Z=r υ , где r - плотность cреды, υ - скорость звука в среде.

Если плоская волна падает, например, нормально к границе раздела двух сред, то звук частично проходит во вторую среду, а часть звука отражается. Если падает звук интенсивностью I 1 , проходит - I 2 , отражается I 3 =I 1 - I 2 , то:

1) коэффициентом проникновения звуковой волны b называется b=I 2 /I 1 ;

2) коэффициентом отражения a называется:

a= I 3 /I 1 =(I 1 -I 2)/I 1 =1-I 2 /I 1 =1-b.

Релей показал, что b =

Если υ 1 r 1 = υ 2 r 2 , то b=1 (максимальное значение), при этом a=0 , т.е. отраженная волна отсутствует.

Студент должен знать : что называется звуком, природу звука, источники звука; физические характеристики звука (частота, амплитуда, скорость, интенсивность, уровень интенсивности, давление, акустический спектр); физиологические характеристики звука (высота, громкость, тембр, минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости, порог болевого ощущения) их связь с физическими характеристиками звука; слуховой аппарат человека, теории восприятия звука; коэффициент звукоизоляции; акустический импеданс, поглощение и отражение звука, коэффициенты отражения и проникновения звуковых волн, реверберация; физические основы звуковых методов исследования в клинике, понятие об аудиометрии.

Студент должен уметь: с помощью звукового генератора снимать зависимость порога слышимости от частоты; определять минимальную и максимальную, воспринимаемые Вами частоты колебаний, снимать аудиограмму с помощью аудиометра.

Краткая теория Звук. Физические характеристики звука

Звуком называются механические волны с частотой колебаний частиц упругой среды от 20 Гц до 20000 Гц, воспринимаемые человеческим ухом.

Физическими называют те характеристики звука, которые существуют объективно. Они не связаны с особенностями ощущения человеком звуковых колебаний. К физическим характеристикам звука относятся частота, амплитуда колебаний, интенсивность, уровень интенсивности, скорость распространения звуковых колебаний, звуковое давление, акустический спектр звука, коэффициенты отражения и проникновения звуковых колебаний и др. Кратко рассмотрим их.

    Частота колебаний . Частотой звуковых колебаний называется число колебаний частиц упругой среды (в которой распространяются звуковые колебания) в единицу времени. Частота звуковых колебаний лежит в пределах 20 - 20000 Гц. Каждый конкретный человек воспринимает определенный диапазон частот (обычно несколько выше 20 Гц и ниже 20000 Гц).

    Амплитудой звукового колебания называется наибольшее отклонение колеблющихся частиц среды (в которой распространяется звуковое колебание) от положения равновесия.

    Интенсивностью звуковой волны (или силой звука ) называется физическая величина, численно равная отношению энергии, переносимой звуковой волной в единицу времени через единицу площади поверхности, ориентированной перпендикулярно вектору скорости звуковой волны, то есть:

где W - энергия волны, t - время переноса энергии через площадку площадью S .

Единица интенсивности: [I ] = 1Дж/(м 2 с) = 1Вт/м 2 .

Обратим внимание на то, что энергия и соответственно интенсивность звуковой волны прямо пропорциональны квадрату амплитуды «А » и частоты «ω » звуковых колебаний:

W ~ A 2 иI ~ A 2 ;W ~ ω 2 иI ~ ω 2 .

4. Скоростью звука называется скорость распространения энергии звукового колебания. Для плоской гармонической волны фазовая скорость (скорость распространения фазы колебания (фронта волны), например, максимума или минимума, т.е. сгустка или разряжения среды) равна скорости волны. Для сложного колебания (по теореме Фурье можно представить в виде суммы гармонических колебаний) вводится понятие групповой скорости – скорость распространения группы волн, с которой переносится энергия данной волной.

Скорость звука в любой среде можно найти по формуле:

, (2)

где Е - модуль упругости среды (модуль Юнга), - плотность среды.

С увеличением плотности среды (например, в 2 раза) модуль упругости Е возрастает в большей степени (более чем в 2 раза), поэтому с увеличением плотности среды скорость звука возрастает. Например, скорость звука в воде равна ≈ 1500 м/с, в стали - 8000 м/с.

Для газов формулу (2) можно преобразовать и получить в следующем виде:

(3)

где  = С Р / С V - отношение молярных или удельных теплоемкостей газа при постоянном давлении (С Р ) и при постоянном объеме (С V ).

R - универсальная газовая постоянная (R=8,31 Дж/моль·К );

Т - абсолютная температура по шкале Кельвина (T=t o C+273 );

М - молярная масса газа (для нормальной смеси газов воздуха

М=29 10 -3 кг/моль ).

Для воздуха при Т=273К и нормальном атмосферном давлении скорость звука равна υ=331,5 332 м/с . Следует заметить, что интенсивность волны (векторная величина) часто выражают через скорость волны:

или
, (4)

где S l - объем, u=W/ S l - объемная плотность энергии. Вектор в уравнении (4) называютвектором Умова .

5. Звуковым давлением называется физическая величина, численно равная отношению модуля силы давления F колеблющихся частиц среды, в которой распространяется звук, к площади S перпендикулярно ориентированной площадки по отношению к вектору силы давления.

P = F/S [P ]= 1Н/м 2 = 1Па (5)

Интенсивность звуковой волны прямо пропорциональна квадрату звукового давления:

I = Р 2 /(2 υ) , (7)

где Р - звуковое давление, - плотность среды, υ - скорость звука в данной среде.

6.Уровень интенсивности . Уровнем интенсивности (уровнем силы звука) называется физическая величина, численно равная:

L=lg(I/I 0 ) , (8)

где I - интенсивность звука, I 0 =10 -12 Вт/м 2 - наименьшая интенсивность, воспринимаемая человеческим ухом на частоте 1000 Гц.

Уровень интенсивности L , исходя из формулы (8), измеряют в белах (Б). L = 1 Б , если I=10I 0 .

Максимальная интенсивность, воспринимаемая человеческим ухом I max =10 Вт/м 2 , т.е. I max / I 0 =10 13 или L max =13 Б.

Чаще уровень интенсивности измеряют в децибелах (дБ ):

L дБ =10 lg(I/I 0 ) ,L=1 дБ приI=1,26I 0 .

Уровень силы звука можно находить через звуковое давление.

Так как I ~ Р 2 , то L(дБ) = 10lg(I/I 0 ) = 10 lg(P/P 0 ) 2 = 20 lg(P/P 0 ) , где P 0 = 2 10 -5 Па (при I 0 =10 -12 Вт/м 2 ).

7.Тоном называется звук, являющийся периодическим процессом (периодические колебания источника звука совершаются не обязательно по гармоническому закону). Если источник звука совершает гармоническое колебание x=ASinωt , то такой звук называют простым или чистым тоном. Негармоническому периодическому колебанию соответствует сложный тон, который можно по теореме Фурье представить в виде совокупности простых тонов с частотами о (основной тон) и 2 о , 3 о и т.д., называемых обертонами с соответствующими амплитудами.

8.Акустическим спектром звука называется совокупность гармонических колебаний с соответствующими частотами и амплитудами колебаний, на которые можно разложить данный сложный тон. Спектр сложного тона линейчатый, т.е. частоты о, 2 о и т.д.

9. Шумом (звуковым шумом) называют звук, который представляет собой сложные, неповторяющиеся во времени колебания частиц упругой среды. Шум представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума состоит практически из любых частот звукового диапазона, т.е. акустический спектр шума - сплошной.

Звук может быть и в виде звукового удара. Звуковой удар - это кратковременное (обычно интенсивное) звуковое воздействие (хлопок, взрыв и т.п.).

10.Коэффициенты проникновения и отражения звуковой волны. Важной характеристикой среды, определяющей отражение и проникновение звука является волновое сопротивление (акустический импеданс) Z= υ , где - плотность среды, υ - скорость звука в среде.

Если плоская волна падает, например, нормально к границе раздела двух сред, то звук частично проходит во вторую среду, а часть звука отражается. Если падает звук интенсивностью I 1 , проходит - I 2 , отражается I 3 =I 1 - I 2 , то:

1) коэффициентом проникновения звуковой волны называется =I 2 /I 1 ;

2) коэффициентом отражения называется:

= I 3 /I 1 =(I 1 -I 2 )/ I 1 =1-I 2 /I 1 =1- .

Релей показал, что =

Если υ 1 1 = υ 2 2 , то =1 (максимальное значение), при этом =0 , т.е. отраженная волна отсутствует.

Если Z 2 >>Z 1 или υ 2 2 >> υ 1 1 , то 4 υ 1 1 / υ 2 2 . Так, например, если звук падает из воздуха в воду, то =4(440/1440000)=0,00122 или 0,122% интенсивности падающего звука проникает из воздуха в воду.

11. Понятие о реверберации . Что представляет собой реверберация? В закрытом помещении звук многократно отражается от потолка, стен, пола и т. п. с постепенно уменьшающейся интенсивностью. Поэтому после прекращения действия источника звука в течение некоторого времени слышен звук за счет многократного отражения (гул).

Реверберацией называется процесс постепенного затухания звука в закрытых помещениях после прекращения излучения источником звуковых волн. Временем реверберации называется время, в течение которого интенсивность звука при реверберации снижается в 10 6 раз. При проектировании учебных аудиторий, концертных залов и т.п. учитывают необходимость получения определенного времени (интервала времени) реверберации. Так, например, для Колонного зала Дома Союзов и Большого театра г. Москвы время реверберации для пустых помещений соответственно равно 4,55 с и 2,05 с, для заполненных – 1,70 с и 1,55 с.