Элементарные частицы. Мир элементарных частиц Проблемы элементарных частиц план конспект

13.04.2024 Инсулин

Мир элементарных частиц

Урок в 11 классе

Цель урока:

Образовательные:

Познакомить учащихся со структурой элементарных частиц, с особенностями сил и взаимодействия внутри ядра; научить обобщать и анализировать полученные знания, правильно излагать свои мысли; способствовать развитию мышления, умению структурировать информацию; воспитывать эмоционально-ценностные отношения к миру

Развивающие:

Продолжить развитие мышления, умения анализировать, сравнивать, делать логические выводы.

Развивать любознательность, умения применять знания и опыт в различных ситуациях.

Воспитательные:

Развитие навыков интеллектуальной коллективной работы; воспитание основ нравственного самосознания (мысль: ответственность ученого, первооткрывателя за плоды своих открытий);

Пробудить у учащихся интерес к научно – популярной литературе, к изучению предпосылок открытия конкретных явлений.

Цель урока:

Создать условия для развития интеллектуальной и коммуникативной компетентностей, в которых ученик сможет:

Назвать основные виды элементарных частиц;

Осмыслить многозначность современной стандартной модели мира;

Сформулировать свои представления об истории развития элементарных частиц;

Проанализировать роль развития элементарной физики;

Классифицировать элементарные частицы по их составу;

Задуматься о необходимости иметь собственную позицию, толерантно относиться к иной точке зрения;

Проявлять бесконфликтное общение при работе в группе.

Тип урока: изучение нового материала.

Форма урока: комбинированный урок.

Методы урока: словесные, наглядные, практические.

Оборудование: компьютерная презентация, мультимедийный проектор, рабочая тетрадь ученика, персональный компьютер.

Этапы урока

Время, мин.

Методы и приемы

1 .Организационное введение. Постановка учебной проблемы.

Запись темы урока. Рассказ учителя.

2. Актуализация знаний (презентация ученика)

Рассказ учащегося о имеющихся знаниях, предпосылки изучения нового.

3. Изучение нового материала (презентация учителя)

Рассказ учителя с использованием слайдов. Наблюдение. Беседа. Рассказ ученика с использованием слайдов.

4. Отработка изученного материала. Закрепление.

Закрепление по опорному конспекту и

работа с учебником. Ответы на контрольные вопросы.

5. Подведение итогов. Домашнее задание

Выделение главного учителем, учениками.

Ход урока

    Организационный момент урока (приветствие, проверка готовности обучающихся к уроку)

Сегодня на уроке мы с вами рассмотрим различные взгляды на устройство мира, из каких именно частиц состоит всё то, что нас окружает. Урок будет похож на лекцию, и от вас, в основном, требуется внимание.

В начале урока я хочу предложить вашему вниманию историю возникновения учения о частицах.

2. Актуализация знаний.(Презентация Алексахиной В. «История развития знаний о частицах»)

Слайд 2 . Античный атомизм – это представления о строении мира учеными античности. По представлениям Демокрита, атомы были вечными, неизменными, неделимыми, отличающимися по форме и размерам частицами, которые, соединяясь и разъединяясь, образовывали различные тела.

Слайд 3. Благодаря открытию учеными Дираком, Галилеем и Ньютоном принципа относительности, законов динамики, законов сохранения, закона всемирного тяготения, в 17 веке атомистика древних претерпела значительные изменения и в науке утвердилась механическая картина мира , в основе которой лежало гравитационное взаимодействие – ему подвержены все тела и частицы, не зависимо от заряда.

Слайд 4. Знания, накопленные при изучении электрических, магнитных и оптических явлений, привели к необходимости дополнения и развития картины мира. Таким образом, в 19 веке и до начала 20 века стала господствовать электродинамическая картина мира . В ней рассматривалось уже два типа взаимодействия – гравитационное и электромагнитное. Но им не удалось объяснить только тепловое излучение, устойчивость атома, радиоактивность, фотоэффект, линейчатый спектр.

Слайд 5. В начале 20 века появилась идея квантования энергии, которую поддерживали Планк, Эйнштейн, Бор, Столетов, а также корпускулярно-волновой дуализм Луи де Бройля. Эти открытия ознаменовали появление квантово-полевой картины мира , в которой добавилось ещё и сильное взаимодействие. Началось активное развитие физики элементарных частиц.

3. Изучение нового материала

До тридцатых годов 20 века устройство мира представлялось ученым в самом простом виде. Они считали, что «полный набор» частиц, из которых состоит все вещество – это протон, нейтрон и электрон. Поэтому их назвали элементарными. К этим частицам относят и фотон – переносчик электромагнитных взаимодействий.

Слайд 6. Современная стандартная модель мира:

Материя состоит из кварков, лептонов и частиц – переносчиков взаимодействия.

Для всех элементарных частиц есть вероятность обнаружить античастицы.

Корпускулярно-волновой дуализм. Принципы неопределённости и квантования.

Сильные, электромагнитные и слабые взаимодействия описываются теориями великого объединения. Остается необъединенная гравитация.

Слайд 7. Ядро атома состоит из адронов, которые состоят из кварков. Адроны – частицы, участвующие в сильном взаимодействии.

Классификация адронов: Мезоны состоят из одного кварка и одного антикварка Барионы состоят из трёх кварков – нуклонов (протоны и нейтроны) и

гиперонов.

Слайд 8. Ква́рки - фундаментальные частицы, из которых состоят адроны. В настоящее время известно 6 разных сортов (чаще говорят - ароматов) кварков. Кварки удерживает сильное взаимодействие, участвуют в сильных, слабых и электромагнитных. Обмениваются между собой глюонами, частицами с нулевой массой и нулевым зарядом. Для всех кварков существуют антикварки. Они не могут наблюдаться в свободном виде. Имеют дробный электрический заряд: +2/3е – называются U-кварками (верх) и -1/3е – d-кварк (низ).

Кварковый состав электрона - uud, кварковый состав протона - udd

Слайд 9. Частицы, не входящие в состав ядра, – лептоны. Лептоны – фундаментальные частицы, не участвующие в сильном взаимодействии. На сегодня известно 6 лептонов и 6 их античастиц.

У всех частиц есть антицастицы. Лептоны и их античастицы: электрон и позитрон с ними электронное нейтрино и антинейтрино. Мюон и антимюон с ними мюонное нейтрино и антинейтрино. Таон и антитаон - таонное нейтрино и антинейтрино.

Слайд 10. Все взаимодействия в природе являются проявлениями четырех видов фундаментальных взаимодействий между фундаментальными частицами – лептонами и кварками.

Сильному взаимодействию подвержены кварки, а глюоны являются его переносчиками. Оно связывает их вместе, образуя протоны, нейтроны и другие частицы. Косвенно оно влияет на связь протонов в атомных ядрах.

Электромагнитному взаимодействию подвержены заряженные частицы. При этом под воздействием электромагнитных сил сами частицы не изменяются, а лишь приобретают свойство отталкиваться в случае одноименных зарядов.

Слабому взаимодействию подвержены кварки и лептоны. Самый известный эффект слабого взаимодействия – превращение нижнего кварка в верхний, что в свою очередь заставляет нейтрон распасться на протон, электрон и антинейтрино.

Одной из самых существенных разновидностей слабого взаимодействия является взаимодействие Хиггса . Согласно предположениям, поле Хиггса (серый фон) заполняет все пространство жидкость, ограничивая дальность слабых взаимодействий. Также бозон Хиггса взаимодействует с кварками и лептонами, обеспечивая существование их массы.

Гравитационное взаимодействие. Является наиболее слабым из известных. В нем участвуют все без исключения частицы и переносчики всех видов взаимодействия. Осуществляется благодаря обмену гравитонами – единственными, еще не открытыми на опыте частицами. Гравитационное взаимодействие всегда является притяжением.

Слайд 11. Многие физики надеются на то, что подобно тому, как удалось объединить электромагнитное и слабое взаимодействия в электрослабое, со временем удастся построить теорию, объединяющую все известные виды взаимодействий, название которой «Великое объединение».

4 . Закрепление знаний.

Первичное закрепление (Презентация Гордиенко Ж. «Большой адронный коллайдер». Современные ученые стараются усовершенствовать процесс изучения частиц, с целью добиться новых открытий для научно-технического прогресса. Для этого строятся грандиозные исследовательские центры и ускорители. Одним из таких грандиозных строений является Большой адронный коллайдер.

Итоговое закрепление (работа в группах: ответы на вопросы по учебнику)

Вы разделены на две группы: 1 ряд и 2 ряд. У вас есть задание на листиках: вам необходимо ответить на вопросы, а ответы вы найдете в учебнике в параграфе 28 (стр. 196 – 198).

Задания первой группы:

    Сколько всего фундаментальных частиц? (48)

    Кварковый состав электрона? (uud)

    Перечислите два самых сильных взаимодействия (сильное и электромагнитное)

    Полное число глюонов? (8)

Задания второй группы:

    Сколько частиц лежит в основе мироздания? (61)

    Кварковый состав протона? (udd)

    Перечислите два самых слабых взаимодействия (слабое и гравитационное)

    Какие частицы осуществляют электромагнитное взаимодействие? (фотон)

Озвучивание руководителями групп ответов на вопросы и обмен карточками.

    Итог урока.

Вы познакомились с некоторыми аспектами развития современной физики и теперь имеете элементарные представления о том, в каком направлении развивается наша наука и для чего нам это нужно.

6. Домашнее задание. Параграф 28.

Задания первой группы:

1. Сколько всего фундаментальных частиц? ______________

2. Кварковый состав электрона? ____________

3. Перечислите два самых сильных взаимодействия ______

4. Полное число глюонов? _______

___________________________________________________________________

Задания второй группы:

1. Сколько частиц лежит в основе мироздания? ________

2. Кварковый состав протона? ___________

___________________________________________________________________

Задания первой группы:

1. Сколько всего фундаментальных частиц? __________

2. Кварковый состав электрона? __________

3. Перечислите два самых сильных взаимодействия __________________________________________________________________________

4. Полное число глюонов? _________

___________________________________________________________________

Задания второй группы:

1. Сколько частиц лежит в основе мироздания? ____________

2. Кварковый состав протона? _____________

3. Перечислите два самых слабых взаимодействия ______________________

4. Какие частицы осуществляют электромагнитное взаимодействие? ______

___________________________________________________________________

Задания первой группы:

1. Сколько всего фундаментальных частиц? _____________

2. Кварковый состав электрона? ______________

3. Перечислите два самых сильных взаимодействия ________________________________________________________________________

4. Полное число глюонов? _____

___________________________________________________________________

Задания второй группы:

1. Сколько частиц лежит в основе мироздания? ______

2. Кварковый состав протона? _________

3. Перечислите два самых слабых взаимодействия _______________________

4. Какие частицы осуществляют электромагнитное взаимодействие? _______

Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

Элементарные частицы обычно подразделяются на четыре класса . Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

Дадим краткую характеристику четырем классам элементарных частиц.

К одному из них относится только одна частица – фотон .

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Второй класс образуют лептоны , третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

n , p ,

гипероны

Барионные

резонансы

Мезонные

резонансы

Лептоны (греч. «лептос » – лёгкий) - частицы , участвующие в электромагнитных и слабых взаимодействиях . К ним относятся частицы, не обладающие сильным взаимодействием: электроны (), мюоны (), таоны (), а также электронные нейтрино (), мюонные нейтрино () и тау-нейтрино (). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами . Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

Адроны (греч. «адрос » – крупный, массивный) - частицы , участвующие в сильных , электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны .

Барионы - адроны , состоящие из трёх кварков (qqq ) и имеющие барионное число B = 1.

Класс барионов объединяет в себе нуклоны (p , n ) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов (). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами . За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда .

Мезоны - адроны , состоящие из кварка и антикварка () и имеющие барионное число B = 0.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы (), K-мезоны, или каоны (), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами .

Калибровочные бозоны - частицы , осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W + , W – , Z 0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

Масса частицы , m . Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z -бозон). Z -бозон - наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

Время жизни , τ. В зависимости от времени жизни частицы делятся на стабильные частицы , имеющие относительно большое время жизни, и нестабильные .

К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π 0 -мезон, имеющий время жизни τ = 0.8×10 - 16 с.

К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами . Характерное время жизни резонансов - 10 - 23 -10 - 24 с.

Спин J . Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином - Бозе–Эйнштейна.

Электрический заряд q . Электрический заряд является целой кратной величиной от е = 1,6×10 - 19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

Внутренняя четность Р . Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Квантовые числа : барионное число В , странность s , очарование (charm ) с , красота (bottomness или beauty ) b , верхний (topness ) t , изотопический спин I приписывают только сильновзаимодействующим частицам - адронам .

Лептонные числа L e , L μ , L τ . Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e , μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны ν e , n μ и n τ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения L e , L μ , L τ = 0, +1, -1. Например, e - , электронное нейтрино n e имеют L e = +l; , имеют L e = - l. Все адроны имеют .

Барионное число В . Барионное число имеет значение В = 0, +1, -1. Барионы, например, n , р , Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

Странность s . Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K + - , K – - мезоны имеют s = + l.

Charm с . Квантовое число с с = 0, +1 и -1. Например, барион Λ + имеет с = +1.

Bottomness b . Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В + -мезон имеет b = +1.

Topness t . Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I . Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты . Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ + , Σ - , Σ 0 , входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет , 2I + 1.

G - четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G- четность сохраняется только в сильных взаимодействиях.

Цель: Рассказать учащимся об элементарных частицах, их основных свойствах и классификациях

Ход урока

Новый материал (дается лекционно)

Исследования строения атома и атомного ядра показали, что в состав атома входят электроны, протоны, нейтроны. Было принято называть эти частицы элементарными. Фотон(), позитрон (е +)и нейтрино (v), имеющие самое непосредственное отношение к атому и ядру, также стали называть элементарными частицами.

По первоначальному замыслу Элементарные частицы являются наипростейшими частицами, из которых построено вещество (атомы) существующего мира.

Элементарные частицы первоначально представлялось как нечто вечное, неизменное, нерушимое, и образ элементарной частицы связывался с образом песчинки или бесструктурного маленького шарика.

В наши дни не существует четкого критерия элементарности. Понятие "элементарная частица" в наши дни является весьма сложным.

Кратко перечислим известные элементарные частицы в порядке их исторического открытия.

Методические замечания: Учащимся в момент дальнейшего объяснения предлагается заполнять следующую таблицу (Приложение 1)

К какому виду относится Название частицы Обозначение Год открытия Заряд q Масса частицы

Электрон был открыт Дж.Дж.Томсаном в 1897г..Через массу электрона обычно выражаются массы других элементарных частиц.

В 1900г. М.Планком и особенно, в 19005г. А.Эйнштейном было показано, что свет состоит из отдельных порций - фотонов. Фотон не обладает зарядом, и его масса покоя =0.Фотон может существовать только в процессе движения со скоростью света.

Опыты Резерфорда по рассеянию -частиц в 1911г. Привели к открытию протона. Масса протона=1836m е

Большинство физиков были уверены в том, что им удалось наконец-то все многообразие химических элементов и веществ природы свести к двум простейшим сущностям: к электронам и протонам. Картина, нарисованная физиками тех лет по вопросам строения вещества, вселяло чувство научной красоты и изящества. В период с 1911г. По 1932г. Многие ученые были преисполнены чувством удовлетворения, что им удалось осуществить многовековую мечту научного поиска.

Однако в 1928г. П. Дирак, а в последствии в 1932г. К.Андерсон были обнаружены такие частицы, получившие название позитроны(е +)

Позитрон - это первая элементарная частица, предсказанная теоретически.

В 1932г. Д.Чедвигом был открыт нейтрон с массой = 1838 m е

Нейтрон в свободном состоянии, в отличии от протона, является нестабильным и распадается на протон и электрон с периодом полураспада Т=1,01 10 3 с. В нутрии ядра нейтрон может существовать неопределенно долго.

В 1931-1933гг. В.Паули анализируя -распад предположил, что при распаде, кроме протона и электрона, испускается еще одна нейтральная частица с массой покоя =0. Эту частицу назвали нейтрино ()

Только в 1956г. К.Коуэн с сотрудниками обнаружил антинейтрино(), образующееся в ядерном реакторе. Оно было "поймано" при исследовании реакции: р+ v n+е + , нейтрино вызывает реакцию n+р+е - .

В 1937г. К.Андерсон и С.Неддерман обнаружили заряженные частицы с массой 206,7m е, эти частицы были названы -мезонами( + и -), обладающие зарядом +е и -е. В настоящее время эти частицы называют -частицами или -мюонами.

В 1947г. Английский ученые С.Поуэль, Г.Оккиалини и др. открыли -мезоны (-мезон - первичный мезон, который, распадаясь, дает мюоны)

Мезон имеют заряд +е и -е, а массы 273,2 m е. Несколько позднее 1950 г. Был открыт нейтральный -мезон( о), с массой 264,2 m е. В настоящее время известно три сорта -мезон: - , о, + , они интенсивно взаимодействуют с нуклонами, легко рождаются при столкновении нуклонов с ядрами, т.е. являются ядерно-активными. В настоящее время считается, что -мезоны являются квантами ядерного поля, ответственными за основную часть ядерных сил.

С 1949-1950гг. началось буквально "нашествие" элементарных частиц, их число стремительно возрастало.

Вновь появившиеся частицы можно разделить на две группы:

Первая группа включает в себя частицы с массами около 966 m е и 974 m е, в настоящее время их называют К-мезонами. Известны К + и К - мезоны с массами приблизительно 966,3 m е и электрическими зарядами +е и -е. Известны нейтральные К-мезоны (К о и К о) с массами 974,5 m е.

Вторая группа частиц получила название гиперонов. В настоящее время известны следующие гипероны:

В 1955г. Открыт антипротон, а в 1956г.- антинейтрон.

За последние годы были открыты новые квазичастицы (резонансных состояний) с необычайно малым временем жизнм, порядка 10 -22 - 10 -23 сек.. В этом случае даже не удается зафиксировать следы частиц и об их существовании можно судить лишь из косвенных соображений, из анализа поведения продуктов их распада.

В последние годы открыт второй сорт нейтрино, так называемое нейтрино(антинейтрино) мюонное и , которое испускается например, при распаде -мезонов;

III группа - тяжелые частицы, или барионы

В эту группу входят:

  • Нуклоны и их античастицы
  • Гипероны и их античастицы

Применение термоядерной энергии на примере установки Токамак

Учащимся предлагается ответить на вопросы:

  • Какую ядерную реакцию называют термоядерной?(устно)
  • Как можно осуществить термоядерную реакцию?
  • Объясните принцип действия установки "Токамак".(письменно используя доп. Литературу)
  • Объясните принцип действия лазерной установки для термоядерного синтеза"(письменно используя доп. литературу)

Примеры явлений, поставивших под сомнение неизменность атомов Электризация тел Линейчатые спектры испускания и поглощения атомов Радиоактивность ЭлектролизФотоэффект Термоэлектронная эмиссия Электрический разряд в газах Вывод: атомы обладают сложным внутренним строением и не являются простейшими неразрушимыми и неизменными частицами




Элементарные частицы (от лат. elementarius – первоначальный, простейший, основной) Частицы, из которых построены атомы считались неспособными ни к каким превращения Элементарными стали считать электроны, протоны и нейтроны Позже фотоны включили в число элементарных частиц Было обнаружено, что свободный нейтрон нестабилен и живет в среднем 15 минут Но нельзя сказать, что нейтрон состоит из этих частиц, они рождаются в момент распада


Элементарными называют частицы, которые на современном уровне развития физики нельзя считать соединением других, более «простых» частиц, существующих в свободном состоянии Элементарная частица в процессе взаимодействия с другими частицами или полями должна вести себя как единое целое Все элементарные частицы превращаются друг в друга, и эти их взаимные превращения – главный факт их существования Неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура


АНТИЧАСТИЦЫ В 1928 году Поль Дирак разработал теорию движения электрона в атоме, учитывающую релятивистские эффекты. Из уравнения получалось, что у электрона должен быть «двойник» - частица такой же массы, но с положительным элементарным зарядом В 1932 году К. Андерсон экспериментально обнаружил в космическом излучении позитроны


АНТИЧАСТИЦЫ У всех элементарных частиц есть античастицы Заряженные частицы существуют парами В 1955 году обнаружен антипротон В 1956 году – антинейтрон Существуют истинно нейтральные частицы – фотон, пи-нуль-мезон, эта- мезон. Они полностью совпадают со своими античастицами


АННИГИЛЯЦИЯ Античастицы оказались способными к особому виду взаимодействия (доказано на опыте Ф. Жолио-Кюри в 1933 г.) Две античастицы при встрече аннигилируют (от лат nihil – ничто), превращаясь в два, редко в три фотона Две античастицы при встрече аннигилируют (от лат nihil – ничто), превращаясь в два, редко в три фотона









Элементарные частицы разделяются на группы по их способностям к различным видам фундаментальных взаимодействий 1. Гравитационное взаимодействие - - описывается законом всемирного тяготения - - действует между любыми телами Вселенной - - играет основную роль только для макроскопических тел больших масс - - носители – гравитоны?


2. Электромагнитное взаимодействие - действует между любыми электрически заряженными частицами и телами, а также фотонами – квантами электромагнитного поля - обеспечивает возможность существования атомов, молекул; определяет свойства твердых тел, жидкостей, газов и плазмы - вызывает деление тяжелых ядер; излучение и поглощение фотонов веществом - носители - фотоны


3. Сильное взаимодействие - это взаимодействие между нуклонами и другими тяжелыми частицами - проявляется на очень коротких расстояниях ~ м - примером является взаимодействие нуклонов ядерными силами - частицы, способные к этому взаимодействию называются адроны - носители – глюоны и мезоны


4. Слабое взаимодействие - в нем участвуют любые элементарные частицы, кроме фотонов - проявляется лишь на очень малых расстояниях ~ м - примером слабого взаимодействия может служить процесс бета- распада нейтрона, распад заряженного пиона - носители – промежуточные бозоны


КВАРКИ Главная идея, высказанная впервые М. Гелл-Манном и Дж. Цвейгом, состоит в том, что все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц – кварков. Кроме лептонов, фотонов и промежуточных бозонов, все уже открытые частицы являются составными. Кварки в сегодняшней Вселенной существуют только в связанных состояниях - только в составе адронов. Например, протон - uud, нейтрон - udd.


Кварковый состав элементарных частиц Все частицы делятся на два класса: Фермионы, которые составляют вещество; Бозоны, через которые осуществляется взаимодействие. Фермионы подразделяются на лептоны и кварки. В настоящее время на роль истинно элементарных частиц претендуют 6 лептонов и 6 кварков


Резюме При исследовании атомов и элементарных частиц были обнаружены явления, совершенно не подчиняющиеся законам классической физики, и это привело к созданию квантовой физики как физики явлений микромира. Каково же соотношение между классической и квантовой физикой? Существуют ли они как две независимые теории или квантовая физика опровергла и отменила классическую?


Резюме Не произошло ни первого, ни второго. Законы квантовой физики оказались универсальными законами, применимыми не только к системам из элементарных частиц, но и к любым телам макромира. В согласии с принципом соответствия классическая физика оказалась частным случаем квантовой физики, применимым лишь в ограниченной области расстояний и размеров тел макромира.